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Abstract—The network link speed is growing at an ever-
increasing rate, which requires all network functions on
routers/switches to keep pace. Bloom filter is a widely-used
membership check data structure in networking applications.
Correspondingly, it also faces the urgent demand of improving
the performance in membership check speed. To this end,
this paper proposes a new Bloom filter variant called Ultra-
Fast Bloom Filters(UFBF), by leveraging the Single Instruction
Multiple Data(SIMD) techniques. We make three improvements
for UFBF to accelerate the membership check speed. First,
we develop a novel hash computation algorithm which can
compute multiple hash functions in parallel with the use of SIMD
instructions. Second, we elaborate a Bloom filter’s bit-test process
from sequential to parallel, enabling more bit-tests per unit time.
Third, we improve the cache efficiency of membership check by
encoding an element’s information to a small block so that it can
fit into a cache-line. We further generalize UFBF, called c-UFBF,
to make UFBF supporting large number of hash functions. Both
theoretical analysis and extensive evaluations show that the UFBF
greatly outperforms the state-of-the-art Bloom filter variants on
membership check speed.

Index Terms—Bloom filter, SIMD, Parallel Techniques.

I. INTRODUCTION

Bloom filters are kinds of space-efficient randomized data
structures for membership check [1, 2]. Due to their simplicity
and efficiency, Bloom filters (and their variants) have been
applied in a wide range of network applications. For exam-
ple, they have been used in routing table lookup [3, 4, 5],
packet classification [6], network measurement [7, 8, 9], web
caching [10, 11], and fast hash table lookup [12] etc. The
trend of these applications is that they need to run in a higher
and higher speed network environment. Currently, the 40GE
and 100GE ports for routers’ line-cards have already been
commercialized and deployed [13]. High-end core routers such
as Cisco CRS-X [14] and Huawei NE9000 [15] both support
400 Gbps line-card (a line-card can accommodate several high-
speed ports). The development of high-speed network requires
all network functions to run at line rate, leaving a very limited
time budget for network devices to process every packet. For
example, a 40GE port needs to achieve 60Mpps throughput,
i.e., processing a packet within 75 clock cycles when using a
state-of-the-art 4GHz CPU. Therefore, Bloom filters need to
run extremely fast to avoid becoming the network applications’
performance bottleneck.
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Most of the researches on network applications assume the
Bloom filters have no (or, tiny) cost for membership check.
However, in fact, it is not. A Bloom filter needs to compute
k independent hash functions and conduct the same number
of memory accesses for an element’s membership check. On
the one hand, the hash functions in Bloom filters have compu-
tational cost. We know that strong hash functions (e.g., MD5
and SHA-1) are computation-intensive [16]. Though simple
hash functions can be the alternatives for Bloom filters [17],
their performance would be lower and the computational cost
shall not be neglected. A test on our actual machine shows that
MurmurHash (a simple non-cryptographic hash function) con-
sumes 23 clock cycles on average for one hash computation.
On the other hand, the memory accesses in Bloom filters have
time cost and in some cases may cause several cache misses.
Due to the limited on-chip cache size, most of the system data
is stored on off-chip storage (e.g., DRAM). In the worst case, k
cache misses will occur in one element’s membership check.
A large amount of cache misses will deteriorate the system
performance to a large extent. Systems which employ a large
number of Bloom filters(e.g., 24 in [3]) or use a large number
of hash functions in one Bloom filter(e.g., over 10 in [18]),
will experience more obvious computational cost and memory
access delay.

In this paper, we propose a new Bloom filter variant named
Ultra-Fast Bloom Filter (UFBF), aiming to improve a Bloom
filter’s membership check speed. The UFBF consists of a
sequence of blocks. An element’s information is encoded in a
randomly selected block. In practice, if the blocks are cache-
line size aligned and the block size divides the cache-line size,
only (at most) one cache miss would occur during an element’s
membership check. To speedup the hash computation in UFBF,
we develop a novel algorithm which can compute the k hash
functions in parallel. The algorithm uses CPU’s multimedia
instructions, also known as Single Instruction Multiple Data
(SIMD) instructions1 to improve the parallelism in member-
ship check process. By setting different initial seeds in SIMD
registers and implementing hash function code with SIMD
instructions, we can achieve to complete computing the k hash
functions in parallel. To further speedup the sequential bit-test
process, we use the SIMD instructions to test k bits in parallel.
To facilitate the use of SIMD instructions in bit-test process,
a block in UFBF is divided into k consecutive words, and we
associate each word with one hash function. That is to say, a
hash function can only address its associate word.

Essentially, we make three optimizations for the UFBF to
enable it runing fast. First, the UFBF reduces hash computa-

1The SIMD instructions are widely supported by general CPUs and
embedded CPUs. Take Intel CPU as an example. It supports SIMD instruction
sets, such as MMX, SSE, AVX, FMA, KNC, SVML [19].
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tion time to (approximate) 1/k of a standard Bloom filter,
by developing a novel hash computation algorithm which
computes k hash values in parallel. Second, the UFBF changes
the sequential bit-test process to parallel bit-test process.
The UFBF changes the data structure to a block-word style,
which brings in parallelism in membership check. Third, the
UFBF improves the cache efficiency by encoding an element’s
information to a block. In this way, at most one cache miss
would happen in an element’s membership check.

The remaining of the paper is organized as follows. Sec-
tion II surveys the related work. Section III details the UFBF
scheme and theoretical analysis. Section IV introduces an
extension of UFBF. Section V presents the experimental results
for performance evaluation. Section VI concludes the paper.

II. RELATED WORK

A. Standard Bloom Filter

Bloom filter was introduced by Burton H. Bloom in
1970 [20], which is called Standard Bloom Filter (SBF) in this
paper. An SBF is a space-efficient randomized data structure
which encodes a large data set to a small memory space. A
lookup in SBF can only answer one question: whether an
element belongs to a set or not. However, the lookup answers
have false positives. A false positive happens when an SBF
answers that an element belongs to a set, but actually it is
not. In practical applications, the false positive probability is
usually set to be very small, e.g., less than 10−6, to avoid a
significant impact on performance. For better elaboration of
SBF and our following ideas, we use a number of notations
in this paper, which are shown in Table I.

An SBF for representing a set S is encoded in an array
of m bits. All bits are initially set to 0. Assume S =
{x1, x2, . . . , xn} of n elements is going to be encoded in SBF.
An element uses k independent hash functions h1, h2, . . . , hk

with range [0,m − 1] to select bits to set. For each element
x ∈ S, the bits with location hi(x) are set to 1 for 1 ≤ i ≤ k.
All the bits in SBF are shared by all hash functions and all
elements. So a bit in SBF may be set to 1 multiple times, but
only the first set affects.

After the encoding, the main function of SBF is to imple-
ment membership queries. Given an element e, the SBF has
to check whether e ∈ S or not. If all bits with location hi(e)
are set to 1, we say e ∈ S. If at least one bit with location
hi(e) is 0, we say e /∈ S. A false positive may happen in the
situation that if e /∈ S, but all bits with location hi(e) are set
to 1 by elements in S.

The false positive probability can be calculated by the
following formula:

fs =
(
1− (1− 1/m)nk

)k ≈ (1− e−
nk
m

)k
(1)

The false positive probability can be affected by three param-
eters m,n, k. In practical applications, n is determined by the
set size. fs decreases as m increases, so we can lower false
positive probability by increasing memory space if allowed.
The most flexible parameter is k, which means how many
hash functions we use in the system. We can minimize the
false positive probability for fixed m and n to get an optimal

TABLE I
NOTATIONS

n number of elements in a set
m number of bits in the bit array
k number of membership bits for each element
w number of bits in a word
r number of blocks in a Bloom filter, m = r × w × k
b number of bits in a block, b = w × k
c number of selected blocks to encode an element in c-UFBF
fs the false positive probability of SBF
fu the false positive probability of UFBF
fc the false positive probability of c-UFBF

hash function number kopt. By taking the derivative of fs with
respect to k and equalizing it to 0, we can get:

kopt = (m/n)ln2 ≈ 9m/13n (2)

with optimal kopt, the false positive probability is:

fs =

(
1

2

)kopt

(3)

It means each bit in the bit array is set to 1 with probability
1
2 when k equals to the optimal value.

B. Towards Fast Bloom Filters

Our work in this paper aims to build fast Bloom filters
by using SIMD techniques. A previous work builds a vec-
torized implementation for probing Bloom filters using SIMD
techniques [21]. However, this work is only an engineering
implementation, lacking of theoretical improvements. Several
previous studies attempt to build fast Bloom filters, which can
be grouped into two categories:

1) Improving cache efficiency. In order to check a member-
ship, a Bloom filter needs to perform k memory accesses. In
the worst case, each memory access results in one cache miss
in each element membership query. We know that high cache
miss rate will deteriorate the program performance. Therefore,
a few researches try to reduce cache misses in membership
check to improve the Bloom filter’s lookup performance.
One-Memory Bloom Filter (OMBF) [22] improves the cache
efficiency by restricting one element’s hashing space to a word.
A word is defined as the communication bandwidth between
the off-chip memory and the processor in one memory access,
e.g., 32 bits or 64 bits. To encode an element, an OMBF first
selects a word from the bit array using an additional hash
function, and then maps k bits in the word using k hash
functions. OMBF effectively reduces (at most) k cache misses
to (at most) one cache miss in an element’s membership check.
However, this method increases the false positive probability
compared to SBF. Blocked Bloom Filter (BBF) [23] has a
similar framework with OMBF. The difference is that BBF
consists of a sequence of blocks (instead of words in OMBF).
BBF restricts one element’s hashing space to a block, and
a block has a cache-line size. A common cache-line size is
512 bits in modern CPUs. If blocks are cache-line aligned,
only (at most) one cache miss could happen in one element’s
membership check.
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2) Reducing hash computation cost. A Bloom filter needs
to compute k independent hash functions to implement mem-
bership check. We know that hash computation is time-
consuming. If k is large, the excessive latency introduced
by hash computation will become the system performance
bottleneck. Lu et al. [24] propose a Bloom filter variant,
called One-Hashing Bloom Filter (OHBF), to lower the hash
computation overhead in Bloom filters. An OHBF uses only
one base hash function plus k modulo operations to implement
a Bloom filter. The bit array in OHBF is divided into k
partitions. To encode an element, OHBF selects a bit and
sets it to 1 in each partition. The locations of selected bits
are determined by using the base hash value to modulo
each partition’s size. Though only one base hash function is
used, OHBF cannot reduce the hash computation overhead to
1/k as the additional modulo operations bring in excessive
computation overhead. Kirsh and Mitzenmacher [25] propose
Less Hashing Bloom Filter (LHBF) which uses two base hash
functions h1(x), h2(x) to implement a Bloom filter. If more
than two hash functions are needed, LHBF mainly employs
a form gi(x) = h1(x) + i ∗ h2(x) to construct additional
hash functions. The authors have proved that LHBF has
the same asymptotic false positive probability as SBF. Song
et al. introduce a simple method to produce k hash values
using O(log k) seed hash functions [4]. However, the paper
lacks theoretical analysis on the randomness of the additional
synthetic hash functions.

III. ULTRA-FAST BLOOM FILTERS

In this section, we introduce a new Bloom filter variant,
called Ultra-Fast Bloom Filter (UFBF), which aims to im-
prove the Bloom filter’s membership check speed in practice.
The UFBF improves the parallelism for hash computation
and membership bit-tests by using SIMD (Single Instruction
Multiple Data) instructions. Since UFBF encodes an element’s
information to a small block, which can be fitted into the
CPU’s cache-line, thus it effectively improves the cache ef-
ficiency when implementing membership check.

A. Basic Data Structure

The UFBF is composed of a sequence of r blocks, and
each block has b bits. A block contains k consecutive words,
and each word has w bits. Apparently, b = k ∗ w. The basic
structure of UFBF is shown in Figure 1. A word means a
group of bits whose length equals to general registers’ bit-
length. For example, the length of general registers of modern
CPUs is 32-bit or 64-bit, which means a word has w = 32
(or 64) bits in practice. Note that a Bloom filter has m bits in
total. Therefore, we have m = r ∗ b = r ∗ k ∗ w.

In the insertion process, an element’s information is encoded
in a randomly selected block. The insertion process is as
follows. UFBF first selects a block from the bit array using a
hash function h0. Then it selects k bits in the selected block
using k hash functions h1, h2, . . . , hk, and sets these bits to
ones. In fact, the hash function hi, 1 ≤ i ≤ k is associated
with word[i], and it can only address the bits in its associate
word.

m=r*b bits

w bits

word[1] word[2] …… word[k]

…… block[1]bit array

block

block[2] block[r-1] block[r]

b=k*w bits

Fig. 1. The basic structure of UFBF.

We use an example to illustrate the insertion process
of UFBF. Assume an element e is going to be encoded
and the word size is w = 4. First, we select a block in
the bit array, i.e., block[h0(e)]. Second, we select k bits
from k words (in block[h0(e)]) using h1(e) = 1, h2(e) =
2, . . . , hk(3) = 4, i.e., word[1].bit[h1(e)], word[2].bit[h2(e)],
. . ., word[k].bit[hk(e)]. Then we set the k bits to ones. The
example is shown in Figure 2.

word[1] word[2] word[k]

e

h1 h2 hk

select a block

h0

1 0 0 0 0 1 0 0 …… 0 0 0 1

……

block[ h0(key) ]

Fig. 2. An example of the insertion process in UFBF.

The check process, checking if a given element belongs to
the encoded set, is similar to the insertion process. UFBF first
selects a block from the bit array using h0. Then it selects k
bits as the insertion process. If all the k bits are ones, then
UFBF returns a positive result (element in the set). Otherwise,
it returns a negative result (element not in the set).

B. The Hash Computation Algorithm in UFBF

We develop a novel algorithm for UFBF to calculate the k
hash functions in parallel with the use of SIMD instructions.
The SIMD instructions are originally designed to accelerate
multimedia encoding/decoding. Unless explicitly called, the
common programs (by default) do not use these instructions
for the consideration of backward-compatibility and cross-
platform use. Even with optimization option for some compli-
ers (e.g., the -O2 option for gcc), only a few sentences of the
common programs would be complied to SIMD instructions.
It is a manner of implicit calls of SIMD instructions.

The hash computation algorithm in UFBF is designed to
facilitate the use of SIMD instructions. And we will explicitly
call the SIMD instructions to accelerate the hash computation
for Bloom filters. Although the SIMD instruction sets are
platform-dependent, we use a high-level abstract description
of these instructions to introduce our algorithm.
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For better understanding, we define two naming rules in our
algorithms:
• vr {} means an SIMD register/variable.
• v {} means an SIMD operation/command.

Algorithm 1: The hash computation algorithm in UFBF

1 seeds[p]← [seed1, seed2, . . . , seedp]
2 hashV als[p]← [0, 0, . . . , 0]
3 vr seeds← v load(seeds)
/* load the p seeds to an SIMD register */

4 vr val← v hashFunc(vr seeds)
/* implement the SIMD hash function which

takes p seeds and compute in parallel */

5 hashV als← v store(vr val)
/* store the p hash values to memory */

Algorithm 2: The main change from a traditional hash
function to its SIMD-version

1 val← val OP a
/* OP is a general arithmetic operation, val

stores the intermediate hash value */

⇓
1 vr a← v broadcast(a)
/* v_broadcast copy p copies of a to vr_a */

2 vr val← v OP(vr val, vr a)
/* v_OP is the SIMD-version of OP, vr_val

stores the intermediate p hash values */

Algorithm 3: An example of Algorithm 2 which shows
how to translate a traditional addition to SIMD additions
in C code

1 val = val + a;
/* val and a are 32-bit(int) integers */

⇓
1 m256i vr a = mm256 set1 epi32(a);
2 m256i vr val = mm256 add epi32(vr val, vr a);
/* _mm256_set1_epi32, _mm256_add_epi32 are the

Intel provided API functions for
AVX/AVX2 instructions */

Suppose the SIMD instructions can implement p pairs
arithmetic operations (i.e., add, sub, mul, etc) at the same time,
e.g., (z1, z2, . . . , zp) = (x1, x2, . . . , xp)+(y1, y2, . . . , yp). The
parameter p is determined by a specific SIMD instruction set.
For example, the Intel SSE instruction set can implement p = 4
pairs of 32-bit arithmetic operations, while the AVX instruction
sets can implement p = 8 pairs of 32-bit arithmetic operations.

The hash computation algorithm in UFBF is shown in
Algorithm 1. This algorithm produces p hash values, by using
the same hash function with different initial seeds. It first
loads p seeds 2 to an SIMD register vr seeds. Then it uses
an SIMD-version hash function v hashFunc to compute the

2Many hash functions(e.g., lookup3 and murmur used in this paper) do not
have special requirements on the seeds. Therefore we randomly select p seeds,
pre-store the seeds in a table and use them when needed.

hash values. After it completes the computation, it stores the
result from an SIMD register vr val to memory. The SIMD-
version hash function is rewritten with the SIMD instructions
according to a traditional hash function. While the SIMD-
version hash function is related to a specific traditional hash
function, we do not show the algorithm for the v hashFunc.
To guide the rewrite rules, we show the main change from a
traditional hash function to its SIMD-version in Algorithm 2.
For better understanding, we show an example of Algorithm 2
in Algorithm 3, which shows how to translate a traditional
addition to SIMD additions in C code. The code follows the
Intel provided APIs and could run in CPUs which support
AVX/AVX2 instructions. The computation process of a tradi-
tional hash function can be summarized as follows: an initial
seed encounters a sequence of arithmetic operations, storing
each step’s result to an intermediate variable. While the SIMD-
version can be summarized as that p initial seeds encounter
the same sequence of arithmetic operations, storing each step’s
results to an intermediate SIMD variable. Therefore, the main
change of an SIMD-version hash computation is that it has to
prepare the SIMD operation data vr val ← v broadcast(a)
and implement the corresponding SIMD operation v op.

C. Parallel Bit-Test in Membership Check

In the membership check process, standard Bloom filters
(and their variants) must test k bits sequentially, i.e., test k bits
one by one and return negative once encountered a zero-bit. If
zero-bit is not encountered at the end of this bit-test process,
return positive. In our UFBF, we change the sequential bit-test
process to parallel bit-test process, reducing the complexity
from O(k) to O(1). In order to achieve parallel bit-test, we
make two improvements for the membership check.

First, we change the bloom filter data structure to a block-
word style (shown in Figure 1), which brings in parallelism
for membership check. The parallelism is reflected in that
the UFBF encodes an element to k consecutive words (in
a block), and these words can be fetched and tested at the
same time. As the standard Bloom filter encodes an element
to k arbitrary locations of the bit array, it does not have this
kind of parallelism, for the reason that it has to fetch a bit
(from memory to register) and test it for every membership
bit in the bit array. Second, we develop a new membership
check algorithm, which implements a parallel bit-test process
with the aid of SIMD instructions. This algorithm computes
the k hash functions in parallel, effectively reducing hash
computation time.

The membership check algorithm for UFBF is shown in
Algorithm 4. In this algorithm, the k membership bits are
tested in parallel. The k hash functions for membership check
in this algorithm are calculated in parallel using Algorithm 1.
Actually, we make an assumption here that k ≤ p, which
means the p hash values produced by Algorithm 1 can satisfy
the Bloom filter’s hash function need. Since p is a fixed
parameter for a specific SIMD instruction set, we can not set
k an arbitrary value in practice. This problem can be solved
by an extension of UFBF, introduced in Section IV.
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Algorithm 4: The membership check algorithm in UFBF

1 Function membershipCheck(element e)
2 loc← compute the block index of e
3 vr val← compute k hash values using Algorithm 1
4 vr a← v broadcast(1)
5 vr a← v shiftLeft(vr a, vr val)

/* v_shiftLeft shifts k words in vr_a
left in parallel by the amount
specified by vr_val */

6 vr b← v load(&block[loc])
7 vr b← v not(vr b)

/* v_not is bitwise NOT operation */

8 v test(vr a, vr b)
/* v_test is bitwise AND operation */

9 if zero-flag is set then
10 return positive
11 end
12 return negative
13 end

D. Cache Efficiency for Membership Check

The cache efficiency for membership check of UFBF is
expected to be far better than SBF. In UFBF, an element’s
information is encoded in a small block of the bit array , and
a block can easily fit into one cache-line of CPU’s cache.
In SBF, an element’s information is encoded in k arbitrary
locations of the bit array, and at most k cache misses could
occur during one membership check process.

Formally, we analyze the worst case cache misses in one
membership check of UFBF. In fact, we make an assumption
in the following proofs: once a cache miss occurs, the CPU
would load the corresponding cache-line immediately, from
off-chip memory (or, low-level cache) into on-chip cache (or,
high-level cache). This assumption is true in practice for most
of the CPUs.

In Theorem 1, we prove that two cache misses would occur
in the worst case in one membership check process, if the
block size is no more than the cache-line size. While this
constraint can be easily satisfied in practice, we want to reduce
(at most) two cache misses to (at most) one cache miss in one
membership check.

In Theorem 2, we prove that only one cache miss would
occur in the worst case in one membership check process,
if a more stringent condition is satisfied, i.e., the block size
divides the cache-line size and the bit array is cache-line size
aligned. In practice, the cache-line usually has size a power
of 2, which means the block size should also be a power of
2 (Corollary 1). By Corollary 2, the hash function number k
should be a power of 2, which suggests that k = 2, 4, 8, 16
etc. That is to say, UFBF experiences better cache efficiency
when k is a power of 2 than when k is other values.

Theorem 1. Suppose the cache-line size is L. If the block size
satisfies b ≤ L, at most two cache misses would occur in one
membership check.

Proof by Contradiction. Suppose that more than two cache

misses occur during one membership check. Because an
element’s information is encoded in just one block in UFBF,
only one block memory would be missed in cache during
one membership check. Denote the starting and end address
of the missed block as addr s, addr e, respectively. The
supposition, more than two cache misses, means ∃ t ∈ N
such that addr s < tL < (t + 1)L < addr e. Then we can
get b = addr e − addr s > [(t + 1)L − tL] = L, which
contradicts b ≤ L in the statement.

Theorem 2. Suppose the cache-line size is L. If the block size
satisfies b|L and the bit array is L-aligned, at most one cache
miss would occur in one membership check.

Proof by Contradiction. Suppose that more than one cache
miss occurs during one membership check. Denote the starting
and end address of the missed block as addr s, addr e,
respectively. Because b|L and the bit array is L-aligned, then
∃ s, i, j ∈ N such that L = sb, addr s = iL+ jb, addr e =
iL + (j + 1)b. The supposition, more than one cache miss,
means ∃ t ∈ N such that addr s < tL < addr e. Substitute
addr s, addr e, we get iL+jb < tL < iL+(j+1)b. Further,
we get isb+ jb < tsb < isb+(j+1)b. Simplify this formula,
we can get 0 < (t − i)s + j < 1. Apparently, (t − i)s + j is
an integer and we get a contradiction.

Corollary 1. Suppose the cache-line size L is a power of 2.
Then we can conclude that if b ≤ L, b is a power of 2, and the
bit array is L-aligned, at most one cache miss would occur
in one membership check.

Corollary 2. Suppose w is a power of 2. Then we can
conclude that if k = b

w ≤
L
w , k is a power of 2, and the

bit array is L-aligned, at most one cache miss would occur
in one membership check.

E. False Positive Probability Analysis

The false positive probability of our proposed UFBF, fu,
is analyzed as follows. Assume we use fully random hash
functions. Let F be the false positive event that an element e′,
which is not in the set, is mistakenly regarded as in the set. To
check the membership of e′, it is hashed to k words, each word
is set one bit, in a membership block. Suppose x elements have
been inserted to this membership block, where x ∈ [0, n]. Then
a bit is set in a word with probability 1− (1− 1

w )x. Let X be
the random variable that represents how many elements have
been inserted to a block. Then the conditional probability for
F to occur when X = x is:

Pr{F|X = x} =
(
1−

(
1− 1

w

)x)k

(4)

Obviously, X follows the binomial distribution, Bino(n, 1
r ),

then we can get

Pr{X = x} =
(
n

x

)(
1

r

)x(
1− 1

r

)n−x

,∀ 0 ≤ x ≤ n (5)
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Then, we can get the false positive probability of UFBF as:

fu = Pr{F} =
n∑

x=0

(Pr{X = x} · Pr{F|X = x})

=
n∑

x=0

(
n

x

)(
1

r

)x(
1− 1

r

)n−x(
1−

(
1− 1

w

)x)k (6)

In the previous analysis, we do not show the effect of hash
function h0 that is used to select the block. Usually the hash
values produced by Algorithm 1 would have unused hash
bits which can be utilized by h0. However, if the unused
hash bits can not satisfy the requirement of h0, then the hash
computation cost of h0 should be considered.

It is difficult to compare the false positive probability of
UFBF and SBF directly using equations, therefore we make
some numerical calculations to find the trend. Table II presents
the comparison of theoretical false positive probability be-
tween SBF (fs) and UFBF (fu). It can be concluded from
this table that UFBF has higher false positive probability than
SBF. In other words, UFBF needs to use more memory to
achieve the same false positive probability as SBF. We find
that the false positive probability changes intensely for small
load factors ( n

m ) both for UFBF and SBF. When the load factor
of Bloom filters increases, the difference of false positive
probability between UFBF and SBF ( fu−fsfs

) decreases. We
also find that fu−fs

fs
nearly halves if the word size (w) of UFBF

changes from 32 to 64. From the perspective of false positive
probability, we prefer larger word size for UFBF. However,
the word size usually is restricted by the SIMD instructions
CPU supported.

TABLE II
COMPARISON OF THE THEORETICAL FALSE POSITIVE PROBABILITY

BETWEEN SBF AND UFBF, n = 10000, k = 4

load factor fs
w = 32 w = 64

(n/m) fu
fu−fs

fs
fu

fu−fs
fs

0.02 3.49 e-5 1.39 e-4 2.98 7.98 e-5 1.28
0.04 4.78 e-4 1.02 e-3 1.14 7.35 e-4 0.54
0.06 2.07 e-3 3.44 e-3 0.66 2.73 e-3 0.32
0.08 5.62 e-3 8.11 e-3 0.44 6.85 e-3 0.22
0.10 1.18 e-2 1.56 e-2 0.32 1.37 e-2 0.16
0.12 2.11 e-2 2.62 e-2 0.24 2.37 e-2 0.12
0.14 3.38 e-2 4.01 e-2 0.19 3.70 e-2 0.09
0.16 4.99 e-2 5.75 e-2 0.15 5.37 e-2 0.08
0.18 6.94 e-2 7.78 e-2 0.12 7.36 e-2 0.06
0.20 9.20 e-2 1.01 e-1 0.10 9.69 e-2 0.05

F. Discussion

In general, the UFBF attempts to improve membership
check performance by introducing parallel operations in mem-
bership check process and using SIMD instructions to ac-
celerate these parallel operations. The SIMD instructions are
well supported by general and embedded CPUs. However,
the dedicated hardware like core router which uses hardware
forwarding engines or network processors which do not sup-
ply the SIMD instructions, this advanced feature cannot be
utilized. Another issue of the UFBF is the poor scalability
of hash function number for indexing membership bits. Due

to restriction of underlying SIMD instructions, the UFBF
can only support no more than p hash functions, where p
is determined by a specific SIMD instruction set. Although
this issue can be relieved by using more powerful instruction
sets with larger parallelism, in next section, we introduce a
generalization of UFBF, which addresses this issue completely.

IV. A GENERALIZATION OF UFBF

The UFBF does not support large hash function number k,
since k is restricted by the underlying SIMD instructions. In
this section, we introduce a generalization of UFBF, called c-
UFBF, which has scalability for the number of hash functions.
The c-UFBF has the same basic data structure with UFBF, as
is shown in Figure 1. The difference is that, when inserting
an element, c-UFBF randomly selects c blocks to encode an
element. The operation for each selected block is the same as
UFBF.

A. False Positive Probability of c-UFBF

Let k be the total bits used for membership check. Let
k1, k2, . . . , kc be the bits used for each block’s membership
check. We have k =

∑c
i=1 ki. To simplify the false positive

analysis of c-UFBF, we assume each block has equal number
of membership bits ki =

k
c , i ∈ [1, c].

Let fc be the false positive probability of c-UFBF. Assume
an element e′ is not in the set. To check the membership of e′,
c blocks are selected. Let us first analyze the event F that k

c
bits in one of the c blocks are all ones. Let X be the random
variable that represents how many times a block has been
selected to encode an element. Suppose x is a specific value
of X , where x ∈ [0, nc]. Then the conditional probability for
F to occur when X = x is:

Pr{F|X = x} =
(
1−

(
1− 1

w

)x)k/c

(7)

As each element selects c blocks to encode its membership,
a total of nc selections are made in the insertion process.
Assume we use fully random hash functions. Hence, a specific
block will be selected with probability 1

r in each selection.
Therefore, X follows the binomial distribution, Bino(nc, 1

r ),
then we can get:

Pr{X = x} =
(
nc

x

)(
1

r

)x(
1− 1

r

)nc−x

(8)

The probability for F to happen is:

Pr{F} =
n∑

x=0

(Pr{X = x} · Pr{F|X = x}) =

cn∑
x=0

(
cn

x

)(
1

r

)x(
1− 1

r

)cn−x(
1−

(
1− 1

w

)x) k
c

(9)

The element e′ selects c blocks for membership check. If the
event F happens in all these blocks, a false positive happens
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in c-UFBF. Therefore, the false positive probability of c-UFBF
is:

fc = (Pr{F})c

=

[
cn∑
x=0

(
cn

x

)(
1

r

)x(
1− 1

r

)cn−x(
1−

(
1− 1

w

)x) k
c

]c
(10)

Obviously, the fc|c=1 = fu. When c = k, we can get:

fc|c=k

=

[
kn∑
x=0

(
kn

x

)(
1

r

)x(
1− 1

r

)kn−x(
1−

(
1− 1

w

)x)]k

=

[
1−

kn∑
x=0

(
kn

x

)(
1

r

(
1− 1

w

))x(
1− 1

r

)kn−x
]k

=

[
1−

(
1

r

(
1− 1

w

)
+ 1− 1

r

)kn
]k

=

(
1−

(
1− 1

m

)nk
)k

= fs

(11)
The numerical result of false positive probability of c-UFBF

is shown in Table III. When the parameter c increases from 1
to 2 and 4, the false positive probability of c-UFBF presents a
decreasing trend (fc|c=1 > fc|c=2 > fc|c=4). Due to fc|c=1 =
fu, fc|c=4 = fs, we can conclude from this table that fu ≥
fc ≥ fs. According to our calculations, this decreasing trend
is held for all common parameter settings of c-UFBF. That
is to say, the false positive probability of c-UFBF is between
UFBF and SBF (fu ≥ fc ≥ fs). When the load factor ( n

m )
increases, the false positive probability of c-UFBF presents a
decreasing trend, which is similar to UFBF.

TABLE III
COMPARISON OF THE THEORETICAL FALSE POSITIVE PROBABILITY FOR
C-UFBF WHEN c CHANGES, n = 10000, w = 32, k = 4. IN THIS TABLE,

f1 = fc|c=1 , f2 = fc|c=2 , f4 = fc|c=4

load factor c = 1 c = 2 c = 4

(n/m) f1 f2
f2−f1

f1
f4

f4−f1
f1

0.02 1.39 e-4 6.47 e-5 −0.53 3.49 e-5 −0.75
0.04 1.02 e-3 6.50 e-4 −0.36 4.78 e-4 −0.53
0.06 3.44 e-3 2.52 e-3 −0.27 2.07 e-3 −0.40
0.08 8.11 e-3 6.45 e-3 −0.20 5.62 e-3 −0.31
0.10 1.56 e-2 1.31 e-2 −0.16 1.18 e-2 −0.24
0.12 2.62 e-2 2.28 e-2 −0.13 2.11 e-2 −0.19
0.14 4.01 e-2 3.60 e-2 −0.10 3.38 e-2 −0.16
0.16 5.75 e-2 5.26 e-2 −0.08 4.99 e-2 −0.13
0.18 7.78 e-2 7.23 e-2 −0.07 6.94 e-2 −0.11
0.20 1.01 e-1 9.52 e-2 −0.06 9.20 e-2 −0.09

B. Membership Check Overhead of c-UFBF

It is easy to prove that c-UFBF has c times the membership
check overhead of UFBF. The increased overhead is threefold.
First, it will cause 2c cache misses in the worst case for one
element membership check. If alignment is satisfied as UFBF,
it will cause c cache misses in the worst case for one element
membership check. Second, it will take c times of the hash

computation time used by UFBF. Third, it will take c times of
the bit-test time used by UFBF. Therefore, we should minimize
c if we aim to build fast Bloom filters. Due to 1 ≤ c ≤ k,
the membership check overhead of c-UFBF is between UFBF
and SBF (assuming the membership check overhead of UFBF
is just 1

k of SBF).

C. Discussion

The c-UFBF extends the UFBF to support a larger number
of hash functions. Instead of selecting one block to encode
an element as UFBF, c-UFBF selects c blocks to encode an
element. Though c-UFBF has better scalability of hash func-
tion number, it has c times the membership check overhead of
UFBF. For not sacrificing the membership check performance
a lot, a small c should be employed in c-UFBF. Actually,
the c-UFBF is a tradeoff between UFBF and SBF. With the
same memory requirement, UFBF has higher false positive
probability and lower membership check overhead than SBF.
While c-UFBF’s false positive probability and membership
check overhead are both between UFBF and SBF.

V. EVALUATION

We make experiments to evaluate our proposed UFBF and
its generalization c-UFBF.

A. Experiment Setup

Platform: We implement the experiments on a commodity
server with Intel CPU Core i7-4790 (4 cores × 2 threads,
3.6 GHz). Each core of this CPU has independent L1 cache
(L1 D-Cache is 32 KBytes, L1 I-Cache is 32 KBytes) and L2
cache (256 KBytes). The 4 cores share L3 Cache (8 MBytes).
The cache-line size is 64-byte (512 bits). This server has
16GB DDR3 (1600 MHz) memory. This server runs Microsoft
Windows 7, 64-bit operating system.

SIMD instructions: The Intel i7-4790 CPU supports sev-
eral SIMD instruction sets. We use the AVX, AVX2 instruction
sets in our experiments. Because AVX2 is a simple extension
of AVX, we use the term AVX to represent AVX, AVX2 in
the following description if there is no confusion. These two
instruction sets can operate 16 256-bit registers [19]. AVX
can implement eight 32-bit signed/unsigned integer arithmetic
operations in parallel. Most of the AVX SIMD instructions
could be called using C/C++ style functions provided by Intel
Intrinsics Guide [26]. We use C/C++ programming language
to code our evaluation programs. The complier we use is gcc.
To use the AVX, AVX2 instruction sets, the special options -
mavx, -mavx2 are needed for gcc.

Datasets: We use the real-world Internet traces, obtained
from CAIDA [27], to evaluate the performance of UFBF. The
trace is extracted from a backbone 10Gbps link and lasts 60
minutes. It contains 2G IPv4 packets, 5M different destination
IP addresses, and 50M flows (flow identifier is <srcIP, dstIP,
srcPort, dstPort, protocol>). We use two datasets extracted
from the traces for our evaluation, as shown in Table IV.
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TABLE IV
DATASETS USED IN THE FOLLOWING EXPERIMENTS

name data ID length # of items
dataset1 dst IPs 4 bytes 5 M
dataset2 flows 13 bytes 50 M

B. The Hash Computation Evaluation

To test the performance of the hash computation algorithm
in UFBF (Algorithm 1), we make two comparative experi-
ments. We use the traditional hash functions murmur [28] and
lookup3 [29] as the compared hash functions. We set the hash
value’s bit-width as 32-bit. Since the AVX instruction set uses
256-bit registers, the hash computation algorithm in UFBF can
compute (at most) 8 hash functions in parallel.

Figure 3 and Figure 4 show the evaluation results. We can
find that the lookup3 hash function consumes 23 clock cycles
on average for one hash computation. As the computation
time is proportional to the hash function number, a linear
increasing trend occurs for computing more hash functions.
However, the SIMD-version (using Algorithm 1) implementa-
tion of lookup3 has a constant computation time when hash
function number ranges from 1 to 8. We find that lookup3-
SIMD consumes 1.78 times the time of lookup3 for computing
one hash function. This difference comes from two aspects.
First, the SIMD-version hash function has to use additional
instructions to prepare the data for SIMD registers. Second, an
SIMD instruction usually takes slightly more time compared
to a corresponding common instruction. The slightly increased
time for computing one hash function can be compensated
when the hash function number increases. We can conclude
that more hash functions used, the more time we can reduce for
SIMD-version hash functions. The comparison of murmur and
its SIMD-version has a similar result with lookup3. However,
the murmur-SIMD consumes 2.43 times the time of murmur
for computing one hash function. The larger ratio (2.43>1.78)
comes from that murmur uses many integer multiplications,
but the AVX instruction set has a relatively poor support for
vector integer multiplication.
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Fig. 3. The run time comparison between lookup3 hash function and its
SIMD-version.
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Fig. 4. The run time comparison between murmur hash function and its
SIMD-version

C. Membership Check Speed Evaluation

We compare three Bloom filters, SBF [20], OMBF [22],
and OHBF [24], with our proposed UFBF. OMBF and OHBF
are two state-of-the-art Bloom filter variants which attempt
to reduce the membership check overhead of Bloom filters.
OMBF attempts to reduce the memory overhead, while OHBF
attempts to reduce the hash computation overhead. UFBF
makes improvements to reduce both memory overhead and
hash computation overhead at the same time. By using SIMD
instructions, UFBF can achieve parallel bit-test in membership
check, which reduces the complexity of bit-test process from
O(k) to O(1). With these advantages, UFBF is expected to
improve the membership check speed effectively. We use two
datasets listed in Table IV to conduct our experiments. In the
experiments, negative check means checking an element not
in the set, while positive check means checking an element
in the set. We use MSPS (Millions Searches Per Second)
as the unit of membership check speed in the following
experiments. The bit array of Bloom filters is cache-line
size aligned. The inserted items (that are encoded to Bloom
filters, called encoded-set) are selected randomly from the two
datasets (5M and 50M). The queries are selected differently
for positive-check and negative-check experiments. In the
positive-check experiments, we repeat lookup the items in the
encoded-set several times. In the negative-check experiments,
the queries are selected randomly from items which are not in
the encoded-set.

Figure 5 presents the membership check speed comparison
of the four Bloom filters, SBF, OMBF, OHBF, and UFBF.
We can see that the check speed of SBF, OMBF, and OHBF
shows an decreasing trend. This is because SBF, OMBF, and
OHBF implement membership check using a sequential bit-
test process, and there are more membership bits to check
on average with the growth of k. While our UFBF presents
a (nearly) constant check speed in these experiments due to
parallel hash computation and parallel bit-test in membership
check. The small jitters of check speed in UFBF comes
from the different cache efficiency for different values of k
(discussed in Section III-D). For SBF, OMBF, and OHBF,
positive check has more membership bits to check (and more
hash computations correspondingly) on average than negative
check, therefore positive check is slower than negative check.
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Fig. 5. The membership check speed of the four Bloom filters: SBF, OMBF,
OHBF, and UFBF. MSPS stands for millions searches per second. We set
n = 105,m = 106. The load factor is n

m
= 0.1. Each point in this figure

is the mean of 1,000 experiments. We implement 1,000,000 queries in each
experiment.

For UFBF, positive check and negative check both test all
membership bits in parallel, therefore positive check and
negative check have (nearly) the same speed. As the CPU’s
cache size (64 Mbits) is larger than Bloom filer bit arrays’
size (1 Mbits) and OMBF mainly aims to improve the cache
efficiency of Bloom filters, OMBF only has slightly faster
check speed than SBF in these experiments. As OHBF reduces
the hash computation overhead a lot and cache efficiency
is not a big issue in these experiments, OHBF has faster
membership check speed than SBF and OMBF. While UFBF
takes both hash computation overhead and cache efficiency
into consideration and improves the bit-test speed, UFBF has
the fastest membership check speed in the four Bloom filer
variants. When k = 8, UFBF doubles the membership check
speed than SBF in negative check, and it has four times the
membership check speed of SBF in positive check.

Figure 6 presents the membership check speed comparison
of the four bloom filters, SBF, OMBF, OHBF and c-UFBF. We
can see that the membership check speed of the four bloom
filters shows an decreasing trend. For OHBF, OMBF and SBF,
the lower check speed has been explained previously. For c-
UFBF, when k is greater than 8, c-UFBF has to perform extra
SIMD instructions to conduct the membership check process.
However, due to parallel hash computation and parallel bit-
test, c-UFBF shows the highest membership check speed than
the other three bloom filters when a large k is set.

Figure 7 presents the negative and positive membership
check speed comparison of the four Bloom filters, SBF,
OMBF, OHBF, and UFBF, when m varies. The L1, L2,
and L3 CPU cache sizes are annotated. We can see that the
membership check speed of the four Bloom filters is nearly
constant when the CPU has adequate cache (m < L2-Cache),
and it drops slowly when the CPU cache is not so adequate
(L2-Cache < m < L3-Cache). The membership check speed
drops quickly when the CPU cache is not enough (m > L3-
Cache) to accommodate the bit array. As UFBF improves the
cache efficiency in its design, it outperforms the other three
Bloom filters on membership check speed, whether the on-
chip memory is enough to accommodate the bit array or not.
Since OHBF’s design does not consider the cache efficiency,
its membership check speed drops sharply when the bit array
size (m) approaches the size of L3-Cache.

Figure 8 presents the membership check speed comparison
of c-UFBF with different configurations. For a same dataset,
the positive check and negative check have different perfor-
mance trends when the load factor increases. In positive check,
the check speed is (nearly) constant when c is fixed and load
factor varies. Another feature in positive check is that the
check speed decreases when c increases. The reason is that the
membership check overhead is proportional to c in c-UFBF, as
discussed in Section IV-B. In negative check, the check speed
is (nearly) constant when c = 1, but the check speed decreases
when c = 2, 3 and the load factor increases. When c = 1, the
c-UFBF is equal to UFBF, it only has to check just one block
to make sure whether an element is in the set or not. However,
when c > 1, c-UFBF has to check the c blocks one by one
and stop the search process once a block’s membership bits
are not all ones. So the check speed is inversely proportional
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Fig. 6. The membership check speed of the c-UFBF when k is set to different
values. We set m = 106, k

c
= 8. The load factor is n

m
= 0.04. Each point in

this figure is the mean of 1,000 experiments. We implement 1,000,000 queries
in each experiment.
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Fig. 7. The membership check speed of the four Bloom filters: SBF, OMBF,
OHBF, and UFBF. We set k = 8. The load factor is n

m
= 0.1. Each point in

this figure is the mean of 1,000 experiments. We implement 1,000,000 queries
in each experiment.

to the average number of blocks needed to access. Obviously,
the average number of blocks needed to access increases with
the growth of load factor, as more ones are inserted to the bit
array.

D. False Positive Evaluation

We make two experiments on false positive ratio evaluation.
Figure 9 presents the comparison on false positive ratio
between theory and simulation results of UFBF. We can see
that the two simulation results on two datasets exactly match
the theoretical analysis, which validates the false positive prob-
ability analysis of UFBF in Section III-E. Figure 10 presents
the comparison on false positive ratio between theory and
simulation results of c-UFBF when c = 2. Again the the two
simulation results on two datasets exactly match the theoretical
analysis, which validates the false positive probability analysis
of c-UFBF in Section IV-A.

VI. CONCLUSIONS

In recent years, Bloom filters have been widely used in all
aspects of the network applications due to their simplicity and
efficiency. However, with the rapid development of network
technology, increasingly strict requirements on the network
speed and latency are put forward, which goes beyond the
ability of traditional Bloom filters. In this paper, we propose
a new Bloom filter variant called Ultra-Fast Bloom Filter,
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Fig. 8. The membership check speed of the c-UFBF when c is set to different
values. We set m = 106, k

c
= 4. The load factor is n

m
= 0.1. Each point in

this figure is the mean of 1,000 experiments. We implement 1,000,000 queries
in each experiment.
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Fig. 9. The false positive ratio of UFBF, n = 10000, w = 4, k = 4. Each
point in this figure is the mean of 1,000 experiments.
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Fig. 10. The false positive ratio of c-UFBF when c = 2, n = 10000, w =
4, k = 4. Each point in this figure is the mean of 1,000 experiments.

which has significant advantages over traditional Bloom filters
in three key factors, i.e., hash computation, membership bit-
tests, and cache efficiency. We develop a novel hash compu-
tation algorithm, which can compute the hash functions in
parallel with the use of SIMD instructions. Again, by the
use of SIMD instructions, the traditional sequential bit-test
process is changed to parallel bit-test process. Since SIMD
instructions are widely supported by most of the modern
CPUs, our UFBF design has a very good application prospect.
The UFBF also has good cache efficiency as it encodes an
element’s information to a small block which can easily fit
into a cache-line. Numerical results show that the UFBF has
a higher false positive rate in most of the settings. However,
compared to its improvement in performance, the tradeoff is
absolutely worthwhile. Further, we introduce a generalization
of UFBF, called c-UFBF, which has better scalability in terms
of the number of hash functions. Actually, the c-UFBF is a
tradeoff between UFBF and SBF. Either in terms of the false
positive probability or the membership check overhead, the
performance of c-UFBF is between UFBF and SBF.
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