
Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service
Gateways with Programmable Switches

Tian Pan†, Nianbing Yu†, Chenhao Jia†, Jianwen Pi†, Liang Xu†, Yisong Qiao†, Zhiguo Li†,
Kun Liu†, Jie Lu†, Jianyuan Lu†□, Enge Song†, Jiao Zhang∗, Tao Huang∗, Shunmin Zhu⋆†□

†Alibaba Group ∗Purple Mountain Laboratories ⋆Tsinghua University

ABSTRACT
The cloud gateway is essential in the public cloud as the central
hub of cloud traffic. We show that horizontal scaling of software
gateways, once sustainable for years, is no longer future-proof fac-
ing the massive scale and rapid growth of today’s cloud. The root
cause is the stagnant performance of the CPU core, which is prone
to be overloaded by heavy hitters as traffic growth goes far beyond
Moore’s law. To address this, we propose Sailfish, a cloud-scale
multi-tenant multi-service gateway accelerated by programmable
switches. The new challenge is that large forwarding tables due
to multi-tenancy cannot be fit into the limited on-chip memories.
To this end, we devise a multi-pronged approach with (1) hard-
ware/software co-design for table sharing, (2) horizontal table split-
ting among gateway clusters, (3) pipeline-aware table compression
for a single node. Compared with the x86 gateway of a similar
price, Sailfish reduces latency by 95% (2µs), improves throughput
by more than 20x in bps (3.2Tbps) and 71x in pps (1.8Gpps) with
packet length < 256B. Sailfish has been deployed in Alibaba Cloud
for more than two years. It is the first P4-based cloud gateway in
the industry, of which a single cluster carries dozens of Tbps traffic,
withstanding peak-hour traffic in large online shopping festivals.

CCS CONCEPTS
•Networks→Data center networks; Intermediate nodes;Pro-
grammable networks.

KEYWORDS
virtual private cloud, cloud gateways, programmable data plane,
forwarding table compression

ACM Reference Format:
Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao,
Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, Enge Song, Jiao Zhang, Tao Huang,
Shunmin Zhu. 2021. Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-
Service Gateways with Programmable Switches. In ACM SIGCOMM 2021
Conference (SIGCOMM ’21), August 23–28, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3452296.3472889

□Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8383-7/21/08…$15.00
https://doi.org/10.1145/3452296.3472889

1 INTRODUCTION
The public clouds provide customers with the ability to use on-
demand, scalable computing resources (e.g., servers, storage, net-
working) to achieve agility, cost efficiency and business continu-
ity based on cloud resource pooling and autoscaling [36]. World-
wide end-user spending on public cloud services has grown per-
sistently over years [12] and the global pandemic has reinforced
this trend [13]. To meet the increasing cloud usage demands, pub-
lic cloud vendors, such as Amazon, Microsoft, Google and Alibaba,
have invested lots of cutting-edge research and development ef-
forts into addressing the performance, scalability, elasticity, stabil-
ity and reliability of the globally distributed cloud infrastructures.

A cloud gateway is a packet forwarding device, which provides
performant and reliable connectivity to globally distributed cloud
resources in a multi-tenant environment [8, 25]. To satisfy the re-
source isolation requirements from customers, public cloud ven-
dors build virtual private clouds (VPCs) [41]within the public cloud
through overlay network protocols such as VXLAN [27]. Virtual
machines (VMs) within the same VPC can communicate with each
otherwhile VMs belonging to different VPCs are isolated and trans-
parent from each other. Sometimes, a VM in one VPC needs to com-
municate with another VM in a different VPC within the same re-
gion or in a remote region. In other cases, a VM in one VPC wants
to access the public Internet or the resources inside the enterprise’s
local data centers (IDCs). The cloud gateway addresses these inter-
VM and cross-region communication requirements and constructs
tunnels if the communication needs to cross the VPC boundary.

As the central hub of the east-west traffic (VM-VM), the south-
north traffic (VM-Internet) and the IDC/cross-region traffic (VM-
IDC/Cross-region) of the entire cloud, the gateway plays a critical
role in the public cloud infrastructure.The cloud has experienced a
violent traffic growth over the years. Within data centers, servers’
Ethernet transfer rates grow rapidly to 400GbE and beyond [35].
In 2019, Alibaba put the entire e-commerce business onto the pub-
lic cloud [6], contributing to dozens of Tbps traffic for its cloud
gateway. Therefore, the performance of the cloud gateway at the
traffic aggregation point is expected to scale up gracefully to cope
with the explosive traffic growth, preventing it from becoming the
system choke point. Besides, the stability of the cloud gateway is
also important for 24/7 uninterrupted cloud service delivery.

In addition to the forwarding performance, the cloud gateway
needs to carry a large number of stateless and stateful forward-
ing tables for diverse cloud services. Specifically, due to the multi-
tenancy in the public cloud, the forwarding table entry size is large
containing both the VPC identifier and the destination address
while the table entry number is huge considering the huge num-
ber of VPCs and VMs in the public cloud [8]. In Alibaba Cloud, a
single cloud region can host millions of VPCs and millions of VMs.

194

https://doi.org/10.1145/3452296.3472889
https://doi.org/10.1145/3452296.3472889

Pan et al.SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Sometimes, a top customer can purchase millions of VMs even in a
single VPC. In general, the cloud gateway differs from traditional
network devices in terms of forwarding logic, forwarding through-
put, forwarding table size and forwarding table variety.

To handle the growing workloads, horizontal scaling (i.e., scale-
out) of a single node to multiply the processing capability is com-
mon wisdom in the cloud [15, 16, 18, 31]. Over the years, x86-based
software gateways were previously deployed in clusters in Alibaba
Cloud to battle the rapid growth of cloud traffic. Benefiting from
kernel-bypass techniques [9, 28], hardware upgrades and contin-
uous system tweaks, these x86 boxes serve well and prosper for
many years. However, the scale and growth rate of Alibaba Cloud
today make such horizontal scaling unsustainable. The reason is
three-fold. First, horizontal scaling increases the CapEx (i.e., hard-
ware acquisition cost) and OpEx (i.e., operating expenses such as
engineers consumed in system troubleshooting) of the entire clus-
ter as well as the management and maintenance complexity since
hundreds of x86 nodes are needed in a single cluster. Second, due
to the weak performance of a single CPU core, the CPU core is
likely to be overloaded due to traffic bursts brought by heavy-hitter
flows [37], which further affects the performance isolation for mul-
tiple tenants and deteriorates the service-level agreements (SLAs).
The CPU overload problem also compels system engineers to pre-
allocate even more processing headroom for each CPU core, which
in turn lowers the gateway cluster utilization and further increases
the CapEx and OpEx. Last but not least is the slowdown of the per-
formance improvement of a single CPU core in recent years [39].
It is well acknowledged that Moore’s law goes far behind Internet
traffic growth [34]. However, the performance improvement of a
single CPU core is even slower than Moore’s law. That i s to say,
the weak single CPU core will be persistently challenged by more
and more heavy-hitter flows in the foreseeable future.

To address this performance issue, we propose Sailfish, an ac-
celerated cloud-scale multi-tenant multi-service gateway with pro-
grammable switching ASICs. Designing Sailfish was challenging
because the large forwarding tables due to multi-tenancy in the
public cloud cannot be completely fit into the limited on-chip mem-
ories of the programmable switching ASICs (e.g., Tofino) [7] and
the memory space of those ASICs are not as flat as those of the
x86 nodes [11]. To this end, we propose a multi-pronged approach.
First, we conduct a hardware and software co-design for table shar-
ing, putting a small number of more s table forwarding t ables in
hardware to cover the majority of traffic generated by frequently
invoked cloud services, and leaving the remaining more volatile
tables or very large stateful tables to software. Second, we propose
horizontal table splitting among gateway clusters, which improves
the scalability and fault isolation, reducing the maintenance com-
plexity. Third, for a single node, we further conduct pipeline-aware
table compression on the Tofino chip by the techniques such as
pipeline folding, table splitting between pipelines, table
mapping across pipelines, memory resource pooling, TCAM
conservation and table entry compression. The single-node table
compression increases the number of entries carried in one
cluster, and thus reduces the number of clusters as well as the
hardware acquisi-tion/maintenance cost. More than two years of
Sailfish deployment experiences about cluster construction, cluster
management, disas-ter recovery as well as the lessons we’ve
learned are also shared.

Our major contributions are summarized as follows.
• Wepropose theworld’s firstmulti-tenantmulti-service cloud

gateway based on programmable switches and disclose the
technical details as well as deployment experiences in depth.

• Wepropose solutions that include conducting hardware and
software co-design for table sharing, distributing table en-
tries horizontally among gateway clusters and focusing on
single-node capacity scale-up to resolve the memory short-
age problem of the currently used programmable ASICs.

• On a single gateway, we carry out table compression that
decreases SRAM occupancy by 38% and TCAM occupancy
by 96% in the IPv4 scenario. In the IPv6 scenario, it decreases
SRAM occupancy by 85% and TCAM occupancy by 98%.

• Compared with an x86 gateway node of roughly the same
unit price, Sailfish lowers the latency by 95% (2µs), improves
the throughput by more than 20x in bps (3.2Tbps) and 71x
in pps (1.8Gpps) with packet length < 256B. Compared with
the x86 gateway clusters, Sailfish reduces the total hardware
acquisition cost by more than 90% for a region. Sailfish has
been deployed in Alibaba Cloud with iterative refinement
for more than two years. It is the first P4-based cloud gate-
way in the industry, of which a single cluster carries dozens
of Tbps e-commerce traffic, successfully withstanding peak-
hour traffic pressure from large online shopping festivals.

2 BACKGROUND AND MOTIVATION
2.1 Gateways for Cloud Networks
Public cloud networks. Different from the private cloud [29],
which is operated for only a few selected users, the public cloud [26]
packages its computing power and storage capability into sliced
products, which are sold to a large number of customers (i.e., ten-
ants) for fine-grained resource sharing to achieve economics of
scale [21]. Under such a multi-tenant architecture, cloud service
buyers expect to build the entire network space to which they’ve
subscribed with customized address segments, routing tables and
ACL rules configured as if they are managing their own local net-
works. At the same time, the public cloud vendors expect as well
that any tenant’s (malicious) behavior will not affect the cloud re-
sources used by others in order to guarantee the SLAs signed with
their customers, even though the physical infrastructure is shared.

To satisfy the above requirements, VPCs [41] are built within the
public cloud environment, providing logical resource isolation be-
tween multiple tenants. To create multiple VPCs transparent from
each other, the public cloud network is no longer just a physical
interconnection among network nodes for data transmission. At
present, mainstream public cloud vendors rely on overlay network
protocols (such as VXLAN [27]) to achieve network multiplexing
and resource isolation, leaving the basic packet forwarding task
to the underlay networks. Specifically, VXLAN is a framework for
overlaying virtualized layer 2 networks over layer 3 networks and
it uses a VXLAN network identifier (VNI) to identify a VXLAN seg-
ment. Only VMswithin the same VXLAN segment (i.e., sharing the
same VNI) can directly communicate with each other. In this way,
a VXLAN segment precisely implements a VPC for isolation.

The role of gateways in the cloud. The advantages of VPCs
attract a large number of users, who establish connections to VPCs
in the public cloud from their home, their office or any other place

195

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

VM vSwitch

VPC A

VPC B

Cloud

Enterprise

Network

Region A

Region B

......

Cross-region Network

Internet Data Center (IDC)

CEN

Cloud

Gateway

Internet

Figure 1: The cloud gateway is the central hub of diverse
cloud traffic.
across the earth. Fig. 1 shows a high-level topology of the pub-
lic cloud infrastructure of Alibaba Cloud. As shown in Fig. 1, Al-
ibaba Cloud has multiple regions and each region contains a large
number of VPCs. The VMs within the same VPC share the same
VNI for network isolation. Multiple VMs are hosted on a physical
server through a hypervisor. A vSwitch running within the hyper-
visor allows communication between VMs. In Fig. 1, IDC is the
enterprise’s local data center, from which employees can connect
to their VPCs in the cloud. CEN is a dedicated leased line network
between cloud regions and IDCs, providing high-speed IDC/cross-
region communication. The Cloud Gateway plays an essential role
in the public cloud infrastructure because it is the exact central
hub of the east-west traffic (VM-VM), the south-north traffic (VM-
Internet) and the IDC/cross-region traffic (VM-IDC/Cross-region)
of the entire cloud.We elaborate on these traffic routes and the typ-
ical cloud services carried on them in Table 1. Take “IDC-VM” as
an example. The traffic originated from the IDC will be forwarded
hop-by-hop through the CEN, the Cloud Gateway, the vSwitch on
the destination server until it finally reaches the destination VM. A
typical service on this route is tenant’s login to his VM from office.
Table 1: Typical cloud service examples on different traffic
routes across the cloud gateway.
Traffic Routes Cloud Service Examples
VM-VM (same VPC, differ-
ent vSwitches)

Message passing for synchronization in distributed
computing

VM-VM (different VPCs) Communication between two cloud tenants within
the same region

VM-Internet Tenant crawls web pages from the Internet
Internet-VM Tenant logs into his VM from home
VM-IDC Tenant pulls the computation results from cloud to

his office
IDC-VM Tenant logs into his VM from his office
VM-Cross-region Communication between one tenant from China

and another tenant from USA

Packet forwarding at the cloud gateway. At the cloud traf-
fic aggregation point, the responsibility of a cloud gateway is to
(1) differentiate the arriving traffic according to the destination
VM address and forward it to the right region/IDC/VPC contain-
ing the destination VM, and (2) find the physical server in the re-
gion/IDC/VPC where the destination VM is hosted according to
the destination VM address. Once the physical server where the
destination VM is hosted is located, the traffic will be sent to the
server and the server will further deliver the traffic to the desti-
nation VM. According to the above forwarding process, the cloud
gateway contains at least two important forwarding tables in its
data path: (1) the VXLAN routing table, and (2) the VM-NC map-
ping table1, as shown in Fig. 2. The VXLAN routing table finds
1NC is the abbreviation for Node Controller, which is the physical server hosting VMs
and controlling their behaviors in Alibaba Cloud.

VXLAN routing table

VNI
Inner Dst IP /

Mask
Scope

Next

Hop

VPC A 192.168.10.0 / 24 Local 0

VPC A 192.168.30.0 / 24 Peer VPC B

VPC B 192.168.30.0 / 24 Local 0

VPC B 192.168.10.0 / 24 Peer VPC A

VM-NC mapping table

VNI
VM IP

(Inner Dst IP)
NC IP

VPC A 192.168.10.2 10.1.1.11

VPC A 192.168.10.3 10.1.1.12

VPC B 192.168.30.5 10.1.1.15

Outer Src IP = Gateway IP

 Outer Dst IP = 10.1.1.15

 VNI = VPC B

VM – VM (same VPC, different vSwitches) VM – VM (different VPCs)

Outer Src IP = Gateway IP

 Outer Dst IP = 10.1.1.12

 VNI = VPC A

 VNI = VPC A

Inner Src IP = 192.168.10.2

Inner Dst IP = 192.168.30.5

 VNI = VPC A

Inner Src IP = 192.168.10.2

Inner Dst IP = 192.168.10.3

Figure 2: Packet forwarding at the cloud gateway.

the right region/IDC/VPC scope according to the inner DIP of the
VXLAN-encapsulated packet. The VM-NC mapping table finds the
exact physical server address where the destination VM is hosted
according to the inner DIP of the VXLAN-encapsulated packet as
well as the region/IDC/VPC scope obtained from the VXLAN rout-
ing table. Before leaving the gateway, the outer DIP of the packet
will be modified with the server address obtained from the VM-NC
mapping table for delivery of the packet to the destination VM.

In Fig. 2, we show the forwarding process of “VM-VM (same
VPC, different vSwitches)” and “VM-VM (different VPCs)” in detail.
“VM-VM (same VPC, different vSwitches)” means the two VMs are
hosted on different physical servers but have the same VNI, while
“VM-VM (different VPCs)” means the two VMs are on different
physical servers and have different VNIs.

VM-VM (same VPC, different vSwitches).The arriving packet first
queries the VXLAN routing table with VPC A (its VNI) and the
IP address 192.168.10.3 (inner Dst IP of the VXLAN-encapsulated
packet, destination VM address), and it hits the first entry of the
VXLAN routing table, where the scope is “Local”, indicating that
the destination VM is also in VPC A. Then, it queries the VM-NC
mapping table and hits the second entry, which shows the physical
server IP of the destination VM is 10.1.1.12. Finally, the packet is
forwarded with its outer Dst IP modified to 10.1.1.12.

VM-VM (different VPCs). The arriving packet first hits the sec-
ond entry of the VXLAN routing table, where the scope is “Peer”
and the “Next Hop” is VPC B, which means the destination VM is
not in VPC A and the gateway should use VPC B as the VNI for fur-
ther lookup of the VXLAN routing table until the scope becomes
“Local”. When querying the VXLAN routing table with VPC B and
192.168.30.5, it hits the third entry, and the scope is “Local”, which
means the destination is in VPC B, then it queries the VM-NCmap-
ping table, finds its server IP in the third entry and gets forwarded.

2.2 Evolution of Software Gateways
Durable architecture for longer service time. As mentioned
earlier, the cloud gateway is located at the traffic aggregation point,
therefore, the stability of the system is critical to the reliability
of cloud services since any gateway failure will explosively affect
a massive number of users. The stability is reflected in two as-
pects: (1) the packet forwarding should be stable and bug-free (oc-
casional crashes of the forwarding instances should be avoided),
and (2) the system architecture should be durable for a longer ser-
vice time (e.g., 3-5 years) to save development expenses in a produc-
tion environment, adapting to the rapid growth of the cloud size
and the number of services (the architecture should be scalable
to handle growing traffic and allow the iterative yet tractable up-
grades to accommodate more services). Besides, the development
should be agile to ensure rapid deployment of new services, espe-
cially given that this gatewaywas being developed during the early
stages of Alibaba Cloud. By considering the above requirements,

196

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Pan et al.

Software gateways for

VPC-VPC traffic

Software gateways for

VPC-Internet traffic

Software gateways for

VPC-IDC/cross-region traffic

Software gateways for

......

Service

integration

XGW-x86s

XGW-x86s

(Faster single CPU core,

more CPU cores,

larger NIC bandwidth)

Scale up

Figure 3: Evolution of the software gateway.
we designed XGW-x86, an x86-based software gateway to serve
cloud traffic forwarding (“XGW” means eXtendable GateWay). We
leveraged DPDK’s kernel-bypass capability [9, 28] to accelerate the
single-node performance (∼1Mpps per CPU core) and used hori-
zontal scaling [31] to further expand the packet processing capac-
ity of the entire gateway cluster. Adding new services to XGW-x86
is easy due to its modular software design. The architecture has
been tested by more than five years of production environment
deployment with the following major evolution as shown in Fig. 3.

Service integration into one versatile gateway. For rapid
deployment of new services, we built ad hoc clusters in the early
stages of Alibaba Cloud, that is, one dedicated XGW-x86 cluster for
one particular cloud service. In this way, the development, testing
and online deployment of new services would not influence other
already deployed services. As the traffic volume increased, some
clusters expanded rapidly while other clusters were underutilized,
both raised system CapEx. Furthermore, heterogeneous clusters
needed different treatments (i.e., we needed to assign dedicated
engineers to different clusters for development and maintenance)
while additional inter-cluster traffic handling was inevitable, both
raised system OpEx. To reduce the CapEx and OpEx, when the
cloud services became more stable, we determined to merge the
heterogeneous software cloud gateways into one unified but ver-
satile gateway, which extended the life of the architecture by re-
ducing the CapEx and OpEx but without losing the scalability. Af-
ter service integration, the monolithic system also became more
stable with fewer bugs because we no longer needed to maintain
separate, distinct codebases for different gateways.

Vertical scaling of single gateway processing capacity.The
hardware speed keeps improving yearly. Taking advantage of this,
XGW-x86 experienced a complete upgrade in its service time with
more powerful CPUs (faster single-core performance, more CPU
cores) and higher-bandwidth NICs. The vertical scaling of single-
node capacity temporarily reduced the size of gateway clusters as
well as the hardware acquisition and maintenance cost.

2.3 Limitations of Software Gateways
Although the durable XGW-x86 architecture haswithstood the traf-
fic processing load and cloud service changes in the past few years,
with the persistent growth of traffic in Alibaba Cloud, it also accu-
mulated many problems over time. Of course, other cloud vendors
may well manage these problems still using the software-based so-
lutions [16, 31]. Here, we try to provide observations and insights
based on our own experiences in Alibaba Cloud.

High CapEx and OpEx of gateway clusters. Software gate-
ways are clustered to handle the traffic in a cloud region. Suppose
the traffic is 15Tbps [20, 30] and each gateway can maximally han-
dle 100Gbps. Then, 15Tbps / 100Gbps = 150 gateways are required.

In a production environment, we need to reserve enough process-
ing headroom for service stability. If gateways are designed to for-
ward at 50Gbps (i.e., 50% water level), the gateway number will
be doubled. Besides, considering the 1:1 backup for disaster toler-
ance, the number will be further doubled to 600! The unit cost of
the software gateway is not cheap because each gateway contains
2/4 high-end Xeon processors [5] and 40/100GbE NICs. Suppose
each gateway costs O($10K), the total cost will reach O($10M) for
a single region. Software gateways also bring about considerable
maintenance overhead for two reasons: (1) in the “scale-out” mode,
each gateway shares the same forwarding tables and the controller
needs to update all gateways simultaneously which is prone to
latency and coherence issues (it takes more than ten minutes to
install all the tables into one XGW-x86 gateway and it is time-
consuming to update hundreds of gateways even though some de-
gree of multi-threading is enabled at the controller), and (2) the
large gateway number increases the difficulty of troubleshooting
because more gateways introduce more potential failure sources.

Beyond themaximumnext-hop limit of the load balancer.
Cloud gateways are placed behind the load balancing switch/router
which conducts ECMP flow-based forwarding [23] to distribute
traffic equally to these gateways. However, commercial load bal-
ancers are generally limited to allowing fewer than 64 possible
next-hops (e.g., on Juniper Networks security devices, the max-
imum number of next-hop addresses in an ECMP set is 16 [3]),
which constrains the size of the gateway cluster. To this end, hun-
dreds of gateway nodes in a cloud region have to be partitioned
intomultiple smaller clusters behind different load balancers, which
further increases the maintenance complexity.

CPU overload due to traffic bursts. Although we’ve already
reserved sufficient safety margin in a real deployment, we still ob-
serve CPU core high utilization due to traffic bursts, especially dur-
ing large online shopping festivals like “Double 11”. In Fig. 4, we
observe that a gateway’s CPU core 1 is persistently overused dur-
ing several days while the other CPU cores are all lightly loaded
(for clarity, we only show the top-5 cores ranked by utilization out
of 32). The CPU core overload will cause packet loss in a region
from time to time as shown in Fig. 5 (note that the CPU core utiliza-
tion shown in Fig. 4 is sampled in a coarse granularity and packet
loss will occur when CPU core utilization reaches 100% even in a
very short moment). In the worst time, the packet loss rate of the
entire region reaches ∼10−5 − 10−4 (at Day 6). In a multi-tenant
cloud, the CPU core overload will deteriorate the tenant’s SLAs if
his traffic is on that core. There are two possibilities for CPU core
overload: (1) load imbalance among gateways, and (2) load imbal-
ance among CPU cores. From Fig. 6, we find that the processing
load is perfectly balanced among gateways during the same time
period. That is, the load is unequally distributed among CPU cores.

Horizontal scaling is common, balancing among gateways
is easy, balancing amongCPU cores is not.We explore the root
cause of the inter-core load imbalance. Fig. 7 shows the traffic pro-
portion of top-N flows on the overused CPU core in historical CPU
overload scenes. We find that in most cases, the top-1 and top-2
flows dominate the traffic. That is, traffic imbalance and a small
number of heavy hitters contribute to the load imbalance among
CPU cores. XGW-x86 follows the run-to-completion model, con-
ducts flow-based hashing and distributes packets received from

197

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

1 2 3 4 5 6 7 8
Day

0

50

100

C
PU

 c
on

su
m

pt
io

n
(%

) Core 1
Core 2
Core 3
Core 4
Core 5

Figure 4: CPU overload in an XGW-
x86 (we show top-5 cores out of 32).

1 2 3 4 5 6 7 8
Day

n×10

Pa
ck

et
 ra

te
 (T

bp
s)

Packet rate
1

Pa
ck

et
 lo

ss
(p

er
 ∼

10
⁴-1

0⁵
 p

ac
ke

ts
)

Packet loss

Figure 5: Traffic rate and packet loss rate of
a region with XGW-x86s in a week.

1 2 3 4 5 6 7 8
Day

0

25

50

C
PU

 c
on

su
m

pt
io

n
(%

) XGW-x86 1
XGW-x86 2
XGW-x86 3
XGW-x86 4
XGW-x86 5

XGW-x86 6
XGW-x86 7
XGW-x86 8
XGW-x86 9
XGW-x86 10

XGW-x86 11
XGW-x86 12
XGW-x86 13
XGW-x86 14
XGW-x86 15

Figure 6: CPU consumption of XGW-
x86s in the same region in a week.

a NIC to multiple RX queues via the RSS (receiver side scaling)
technology [22], load balancing the packets among CPU cores.The
flow-based hashing guarantees intra-flow in-order packet process-
ing; however, it also causes potential CPU core overuse if multiple
heavy-hitter flows are hashed into the sameCPU core, even though
the hashing algorithm itself is perfectly random. Sometimes, a sin-
gle flow in Alibaba Cloud can even reach tens of Gbps, and the
CPU overload problem directly affects the sale of bandwidth to
important customers. Changing the run-to-completion model to a
pipelinemodelmay ameliorate the problem, but the pipelinemodel
on x86 CPUs also has its own problems such as inter-core transfer
performance penalty at the L3 cache [46]. Indeed, some network
processors do have the ability to hash the packets of the same flow
to multiple packet processing engines for packet-based load bal-
ancing and rely on dedicated sequence-preserving hardware for
fast packet reordering [42]. However, the implementation of XGW-
x86 based on general-purpose processors and DPDK cannot real-
ize performant packet reordering due to the absence of dedicated
hardware. Actually, load balancing among gateways/CPU cores is
like randomly tossing balls into bins [33]. The smaller the bins, the
higher probability of overflow. Although horizontal scaling is com-
mon wisdom in the cloud, it may not always work well.

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12P
a

c
k
e

t
p

e
rc

e
n

ta
g

e
 (

%
)

CPU overload scenes

Top-1 flow Top-2 flow Else (about 100 flows)

Figure 7: CPU overload caused by heavy-hitter flows.
Stagnant performance of the single CPU core. We have al-

ready described the root cause of the software gateway limitations,
but a natural question to ask is: can it be smoothly fixed with fu-
ture innovations in technology? We use history to predict the fu-
ture, but the result is pessimistic. Fig. 8 shows Intel i7 CPU per-
formance (single-core and multi-core) and ToR switch port speed
from 2010 to 2020.The former roughly reflects the processing capa-
bility of software gateways and the latter partly reflects the traffic
load faced by the cloud gateways. From 2010 to 2020, the port speed
grew from 10GbE to 400GbE (40x), and themulti-core performance
improvement was 4x; however, the single-core improvement was
only 2.5x.The Internet traffic growth is far beyondMoore’s law [34]
while Moore’s law also goes beyond the performance improve-
ment of a single CPU core. Based on these results, XGW-x86 will
persistently be challenged by more and more heavy hitters.

0

100

200

300

400

500

0

5000

10000

15000

20000

2010 2012 2014 2016 2018 2020

T
o

R
 s

w
it
c
h
 p

o
rt

 s
p

e
e
d

(G

b
p

s
)

C
P

U
 p

e
rf

o
rm

a
n

c
e

(f
ro

m
 g

e
e
k
b

e
n

c
h

.c
o
m

)

Year

Single-core

Multi-core

Switch port

Sun 10GbE Switch 72p

Mellanox SN2410

Wedge 100BF-65X

Cisco Nexus 9364D-GX2A

Figure 8: CPU performance (single-core andmulti-core) and
ToR switch port speed from 2010 to 2020.

3 HARDWARE GATEWAY AND CHALLENGES
3.1 Hardware Options
The exposed problems of XGW-x86 push us to find a more robust
solution to protect the cloud gateway from traffic floods. In late
2017, we naturally turned to hardware and thoroughly investigated
the following three candidates considering speed, cost, programma-
bility and power dissipation.

Fixed-function ASICs. Fixed-function ASICs such as Broad-
comTomahawk 2/3 [1] delivermore than 10Tbps switching through-
putwith constrained power consumption and affordable cost.These
chips are originally made for high-speed switches, due to the lack
of full programmability, however, they are not the best fit for our
versatile cloud gateways. First, Alibaba Cloud deploys many pro-
prietary protocols (such as Vtrace [17]) which need extra support
fromASIC vendors. Second, fixed-functionASICs cannotwell adapt
to the persistent changes of cloud services. The time-to-market cy-
cle of ASICs is too long for the service-driven cloud networks.

FPGAs. FPGAs are fully programmable but have a steep learn-
ing curve.The switching performance of FPGAs is generally below
400Gbps due to their relatively low frequencies, which make them
more suitable for building smartNICs [19] at the end hosts rather
than cloud gateways at the central hub. Recently, some proposals
try to push FPGA’s processing flexibility into the network core [32].
Besides, FPGAs are more expensive than fixed-function ASICs and
more power-hungry for equivalent performance.

Programmable ASICs. Programmable switching ASICs have
both advantages of fixed-function ASICs and FPGAs that it allows
programmers to flexibly customize their forwarding logic and to
quickly adapt to cloud service changes while retaining the high
performance and low power consumption [10, 11]. Besides, pro-
grammable switching ASICs have an affordable price. According to
our knowledge, the Tofino-based switch has roughly the same unit
price as XGW-x86. That is to say, we can replace many XGW-x86
gateways with a single Tofino-based switch that can provide equal
forwarding performance but at a much-reduced cost. In late 2017,
we had very few options for implementing the cloud gateway with

198

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Pan et al.

Table 2: Table size and table occupancy in the Tofino chip.
Table name Key Match type IP type Key length (bit) Match SRAM TCAM

VXLAN routing table VNI, Inner Dst IP LPM IPv4
IPv6

24 + 32
24 + 128

311%
622%

VM-NC mapping table VNI, Inner Dst IP EXACT IPv4
IPv6

24 + 32
24 + 128

58%
233%

Sum (75% IPv4, 25% IPv6) 102% 388.75%

programmable ASICs so we choose the Tofino at that time. But in
2021, numerous chip vendors have announced their programmable
switching ASICs (e.g., Broadcom’s Trident 4 [4], Cisco’s Silicon
One [2]) and we believe our high-level design paradigm and the
experiences with Tofino can be extended to other chips.
3.2 Programmable Switching ASICs
Fig. 9 shows the Tofino’s pipeline-based forwarding architecture.
The Tofino has four independent/isolated pipelines for packet pro-
cessing. On each pipeline, arriving packets will pass through the
Parser/Match-Action Unit/Deparser of the Ingress Pipe and those
of the Egress Pipe in turn. Each pipeline has SRAM and TCAM
memory resources which are equally distributed to multiple stages
of that pipeline. Specifically, each stage has its own SRAM and
TCAM, and cannot access the memory resources of other stages
even in the same pipeline (memories in other pipelines are also in-
accessible). The on-chip memories are very limited (O(10MB)) [24],
and the amount of TCAM is much less than that of SRAM. The in-
termediate result from the table lookup at each stage is kept in
metadata, which is shared within the entire Ingress or Egress Pipe
but cannot directly transfer between them.

RX MACs
Ingress Parser/Match-

Action Unit/Deparser

T
ra

ff
ic

 M
a
n
a
g
e
m

e
n
t

RX MACs
Ingress Parser/Match-

Action Unit/Deparser

Ingress Parser/Match-

Action Unit/Deparser

Ingress Parser/Match-

Action Unit/Deparser

RX MACs

RX MACs

Egress Parser/Match-

Action Unit/Deparser

Egress Parser/Match-

Action Unit/Deparser

Egress Parser/Match-

Action Unit/Deparser

Egress Parser/Match-

Action Unit/Deparser

TX MACs

TX MACs

TX MACs

TX MACs

Pipeline

Packet in Packet out

Figure 9: Tofino’s packet forwarding architecture.
3.3 Technical Challenges
Larger table entry numbers with longer table entries. The
VXLAN routing table and VM-NC mapping table cover the major-
ity of cloud traffic. In the public cloud, the growth of tenants/VPCs,
as well as the interconnection between them, contributes to the ex-
pansion of the VXLAN routing table. The growth of VMs allocated
by tenants contributes to the expansion of the VM-NC mapping
table (some top customers can purchase millions of VMs even in
a single VPC). According to our statistics, a large cloud region in
Alibaba Cloud can have O(1M) VPCs and O(1M) VMs, leading to a
very large VXLAN table and VM-NC table. Except for the table en-
try number, both the VXLAN table and VM-NC table have longer
table entries compared with that of L2/L3 devices. Because in addi-
tion to storing the destination IP addresses, the VXLAN table and
VM-NC table also need to store the 24-bit VNI field.

Limited total on-chip memory capacity. Storing the O(1M)
VXLAN routing table and O(1M) VM-NCmapping table is easy for
the XGW-x86 due to the large-capacity external DRAM; however,
the same is difficult for the above-mentioned Tofino chip with its
smaller O(10MB) on-chipmemories. In addition to limitedmemory
resources, the ratio of SRAM/TCAM is also fixed when the silicon
is taped out, which cannot adapt to the changing cloud service

requirements. Besides, the TCAM is significantly more scarce due
to its expensive price. However, the LPM lookup requirement is not
a small percentage compared with the exact match for the cloud
gateway traffic. Table 2 shows that if we straightforwardly put the
two major tables into the Tofino chip, the memories required by
these tables will be much more than what is available.

Handling diverse cloud services. Besides the VXLAN routing
table and VM-NC mapping table, the gateway also needs to carry
other tables for diverse cloud services. Some tables are stateful and
ultra-large in table entries, such as SNAT with O(100M) entries.
Some tables are volatile, such as temporary tables allocated for on-
demand traffic load balancing that is activated only during online
shopping festivals. Some tables are QoS-related and installed based
on the SLAs signed with customers, such as meter, counter, ACL
tables. Given the limited on-chip memories, how to arrange these
heterogeneous tables in the Tofino needs careful consideration.

Processing yearly growing IPv6 traffic. In addition to han-
dling IPv4 traffic, since more and more customers are transferring
their business to IPv6 [14], the memory design for the cloud gate-
way faces even more challenges. First of all, IPv6 has much longer
table entries, which makes the overall memory consumption much
higher. Second, as the demand for IPv6 continues to grow, we need
to consider dynamically allocating the on-chip memories to meet
the need of growing IPv6 table entries. The dynamic memory allo-
cation is prone to producing memory fragments, resulting in low
utilization of the originally insufficient on-chip memories. There-
fore, how to allocate memories on-demand to efficiently satisfy
both IPv4 and IPv6 becomes another major challenge.

Table placement on noncontinuous memory space. The
Tofino has multiple pipelines and each pipeline has multiple stages.
Each stage has its own local memory resources that cannot be ac-
cessed from other stages. In other words, the memory space is
not flat and continuous on the programmable ASICs, totally dif-
ferent from that of the x86 architecture, where the virtual memory
mechanism guarantees an entirely continuous address space. For-
tunately, large tables across stages within the same pipeline can be
automatically handled by the Tofino’s compiler with table splitting
and mapping to multiple stages. However, the compiler does not
address table placement across pipelines. Besides, as mentioned be-
fore, metadata transferring between Ingress Pipe and Egress Pipe
is not allowed in the Tofino architecture as another architectural
constraint for the programmer. To summarize, we should be thor-
oughly aware of the architectural constraints to map the logical
tables as well as their relationship to the physical memory layout.

4 DESIGN AND IMPLEMENTATION
4.1 Design Overview
In order to successfully handle cloud-scale (high throughput), multi-
tenant (huge VXLAN routing table andVM-NCmapping table) and
multi-service (diverse forwarding tables) traffic, we design Sailfish,
a hardware/software integrated cloud gateway system.The overall

199

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

XGW-HXGW-HXGW-HXGW-H
XGW-HXGW-HXGW-HXGW-H

XGW-HXGW-HXGW-HXGW-H

Load Balancers

XGW-H Clusters

XGW-HXGW-HXGW-HXGW-x86
XGW-HXGW-HXGW-HXGW-x86

XGW-x86 Clusters

a. HW/SW table sharing

b. horizontal table splitting

c. table compression

Cloud Region

Figure 10: Architecture of Sailfish.
architecture and high-level designs are shown in Fig. 10. We lever-
age a multi-pronged approach to solve the problem of insufficient
on-chip memories from three perspectives.

Hardware and software co-design. Sailfish consists of both
Tofino-based hardware gateways (XGW-H) and x86-based software
gateways (XGW-x86). XGW-H is ultra-fast but with limited mem-
ories and constrained memory layout while XGW-x86 has huge
memory space with full programmability but limited performance.
By analyzing traffic characteristics of different cloud services, we
place XGW-H in front of XGW-x86 in a region. We then leverage
XGW-H to store a few key tables frequently hit by the majority of
traffic, and use XGW-x86 as a complement to hold the remaining
volatile tables hit by a small portion of traffic and huge stateful
tables that cannot be compressed into XGW-H. (a in Fig. 10).

Table splitting among XGW-H clusters. Sailfish conducts
horizontal table splitting among XGW-H c lusters i n a r egion to
further reduce the number of table entries stored in each XGW-H.
Here, “horizontal splitting” means each XGW-H stores all the for-
warding tables but only a portion of entries from each table. Multi-
ple XGW-H clusters cover all the entries in a region, while a single
cluster is only responsible for entries of some tenants. Within a
cluster, multiple XGW-H devices maintain the same table entries,
share the traffic load and backup for each other. (b in Fig. 10).

Single-node table compression. Sailfish conducts table com-
pression on each XGW-H in order to greedily fit more table entries
into the single node. These optimizations include pipeline folding,
table splitting between pipelines, table mapping across pipelines,
memory resource pooling, TCAM conservation and table entry
compression. The single-node table compression increases the
num-ber of entries carried in one cluster, thus reducing the
number of necessary clusters, CapEx and OpEx. (c in Fig. 10).
4.2 Hardware and Software Co-Design
Due to the rapid growth of cloud traffic, it is difficult to carry all
the traffic with XGW-x86. The emergence of programmable switch-
ing ASICs allows hardware gateways to handle a variety of cloud
services with high performance. However, the on-chip memories
are too limited for hardware gateways to store all the table entries.
Therefore, the combination of software and hardware is a feasible
direction in the evolution of cloud gateways. Through data min-
ing of real cloud traffic, we find that the traffic exactly follows the
“80/20 rule”. For example, in a typical cloud region, 5% of the ta-
ble entries carry 95% of the traffic, and the remaining 95% of the
entries only carry 5% of the traffic. Based on this observation, we
formulate the principles of hardware and software cooperation.

• XGW-H is the default gateway which is placed in front of
XGW-x86 to absorb the majority of traffic.

SNAT session table (in XGW-x86)

Session Five-tuple
(Inner Src/Dst IP, Inner L4 protocol, Inner Src/Dst port)

Public Network IP /
Src port

Session 1 for VM 1 (Inner Src IP = VM 1 IP)
Session 2 for VM 1

······
Session n for VM k

XGW-x86 IP 1 / Port 1
XGW-x86 IP 2 / Port 2

······
XGW-x86 IP 3 / Port 3

XGW-H

XGW-x86

InternetVM

Request
Response

Figure 11: XGW-H and XGW-x86 cooperation for stateful
SNAT traffic handling.

• XGW-H stores a few key tables frequently hit by the major-
ity of traffic, ensuring the reliability and stability of basic
cloud services. Besides, XGW-H is responsible for guiding
the remaining traffic to XGW-x86.

• XGW-x86 maintains a large number of volatile tables, hit by
a small portion of traffic. It also stores large-sized stateful ta-
bles that cannot be easily compressed into XGW-H. The full
programmability of the continuous memory space in XGW-
x86 eases frequent table updates from long-tail services.

• Generally, unstable newborn services with less traffic are
carried by XGW-x86, while mature services with heavy and
stable traffic are turned over to XGW-H. In this way, the
failure of the unstable services with higher probabilities will
not affect the traffic forwarding at XGW-H. All of the table-
sharing decisions are predetermined by the central controller.

• Considering the huge difference in performance, rate limit-
ing is necessary at XGW-H before forwarding the traffic to
XGW-x86 for overload protection.

Fig. 11 shows an example of cooperation between XGW-H and
XGW-x86 for stateful SNAT traffic handling. Some customers own
a large number of VMs but only a few public IPs. In order for all
the VMs to access the public network, SNAT is needed in the cloud
gateway. SNATmaps the 5-tuple to the public network IP and port.
Hence, the number of entries in the SNAT table is decided by the
number of sessions, which is much larger than the number of VMs.
The entry number of the SNAT table can reach O(100M), while that
of the VM-NC table is only O(1M). The SNAT table is too large
to fit in XGW-H, and the use frequency of each entry is also not
very high. Besides, themapping between the session and the public
IP/Src port is volatile. So we put the SNAT table in XGW-x86.

As shown by the red arrow, the VM visits the public network
through SNAT. The outgoing packet first reaches XGW-H. Accord-
ing to a special VNI tag carried in the packet, XGW-H determines
that the packetwants to visit the public network and requires SNAT.
Then, it forwards the packet to XGW-x86. XGW-x86 finds the cor-
responding public IP and port according to its 5-tuple and then re-
places its inner Src IP and inner Src port, removes the VXLAN tun-
nel and forwards the packet. The blue arrow is the response from
the public network. The public network sends a response packet
to the VM according to the Src IP of the request packet, so the
response packet will directly reach XGW-x86, and then XGW-x86
adds a VXLAN tunnel and sends it to the VM.

After table sharing between XGW-x86 and XGW-H, for a typical
cloud region with tens of Tbps of traffic, considering both safety
margin and disaster tolerance, we sharply reduce the hardware

200

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Pan et al.

Cluster A

XGW-H clusters in a region

Cluster B Cluster C Cluster D

Load Balancers

Controller VNI=A
VNI=B/C/D VNI=E/F

VNI=G

Figure 12: Table splitting among XGW-H clusters.
cost from hundreds of XGW-x86s to ten XGW-Hs for major traf-
fic processing and four XGW-x86s for fallback traffic processing.
4.3 Table Splitting Among XGW-H Clusters
As shown in Fig. 12, in a region, we split the table entries horizon-
tally based on VNI (i.e., tenant ID) into different XGW-H clusters.
Each cluster maintains all the tables and a portion of entries from
each table. The table partition and entry distribution are managed
by the central controller. At the data plane, traffic is distributed
according to the VNI via a load balancer in front of the XGW-H
clusters. There are four major benefits of horizontal table splitting
compared with vertical table splitting or flow-based hashing.

• Good scalability. Straightforwardly maintaining all the ta-
ble entries in each cluster is apparently not scalable due to
the limited on-chip memories of XGW-H. But what if we
conduct vertical table splitting, that is, splitting different ta-
bles of all entries into different clusters? In fact, the merit of
horizontal splitting is that when new tenants are added into
the cloud, we only need to insert new table entries into one
cluster or allocate a new cluster if the original cluster is out
of memory. But vertical table splitting cannot achieve this.

• Fault isolation. In a real deployment, software and hardware
bugs caused by rush development or misconfiguration are
inevitable for such a complex system. Horizontal splitting
can effectively constrain the influence scope of some faulty
entries within one cluster, thus the failure of one cluster will
not influence others in the same region. Otherwise, the in-
fluence scope will extend to the entire region, even if most
clusters have nothing to do with those faulty entries.

• Tractable traffic load balancing. Indeed, for load balancing,
we can also use flow-based hashing to distribute traffic to
multiple clusters. However, load balancing via hashing is
somewhat uncontrollable. By contrast, horizontal splitting
can precisely manage the traffic load on a particular cluster
simply by adding or deleting the corresponding entries.

• Reducedmaintenance complexity. Horizontal table splitting
maintains the same tables and lowers the number of table
entries in the cluster, therefore, reducing the table manage-
ment complexity as well as the disaster recovery time.

4.4 Single-Node Table Compression
After table splitting among clusters, each cluster only needs to
carry part of the table entries. But it does not mean that we can
split infinitely and use an unlimited number of clusters to hold the
entries. There are two reasons: (1) table splitting has a limit since
the VPC is the smallest split granularity, however, some VPCs (e.g.,
top customers) contain millions of entries that challenge the capac-
ity of a single cluster; and (2) we need to consider the CapEx and
OpEx to build clusters. Hence, we further conduct single-node op-
timizations to expand XGW-H’s capacity to hold more entries.

Pipeline folding.XGW-H can originally reach 6.4Tbps forward-
ing throughput if the four pipelines contain the same forwarding

Ingress Pipe 0Packet in Egress Pipe 0

Ingress Pipe 1 Egress Pipe 1

Ingress Pipe 2

Ingress Pipe 3

Egress Pipe 2

Egress Pipe 3

Packet out

Packet in Packet out

Packet
loopback

Packet
loopback

Figure 13: Pipeline folding for storing more table entries.

tables and work in parallel. The throughput can further be increased by
adding more gateways in a cluster. That is, for XGW-H, through-put is
sufficient and easy to extend while memories are in real shortage.
Accordingly, we propose “pipeline folding” as a tradeoff to sacrifice
the through-put by halving the working pipelines for doubled
memory capacity in each "folded" pipeline. As shown in Fig. 13, we
use Ingress Pipe 0/2 as the packet entry point. Then, packets enter
Egress Pipe 1/3, but the ports of those pipes are set to Loopback
mode, so packets will enter Ingress Pipe 1/3 through the same ports
after leaving Egress Pipe 1/3. Finally, pack-ets will be sent out through
Egress Pipe 0/2 (Ingress Pipe 1 goes to Egress Pipe 0, Ingress Pipe 3
goes to Egress Pipe 2). In addition to halving the forwarding
throughput, the design will also double the forwarding latency.
However, adding O(1µs) to the end-to-end la-tency is imperceptible
for the end-users. But the doubled memory capacity for holding more
table entries is indeed a huge gain. Con-sidering the architectural
constraints of the Tofino, we summarize the principles of distributing
tables in the four pipelines as follows.

• Tables should be placed in Ingress Pipe 0/2, Egress Pipe 1/3,
Ingress Pipe 1/3, and Egress Pipe 0/2, following the table
lookup order to match the packet flow in pipeline folding.

• Metadata cannot be directly transferred between Ingress Pipe
and Egress Pipe. If metadata transfer across different pipes
is indeed required, we have to appendmetadata to the packet,
which is called bridging. Bridging will increase the packet
length thus affect the forwarding throughput.With pipeline
folding, the number of possible bridges increases from 1 to 3.
Hence, for tables that need to share the same metadata, we
recommend placing them in the same pipe to minimize the
number of possible bridges as well as the throughput loss.

• Tables should be evenly distributed in different pipelines,
ensuring that each pipeline has enough room for table ex-
pansion in the future, making the system extensible without
frequently re-mapping the existing tables.

Ingress Pipe 0/2

Egress Pipe 1

Egress Pipe 3

Ingress Pipe 1

Ingress Pipe 3

Egress Pipe 0

Egress Pipe 2

Traffic of type A

Traffic of type B

Figure 14: Traffic splitting between pipelines.
Table splitting betweenpipelines.When packets leave Ingress

Pipe 0/2, they will enter Egress Pipe 1/3. Originally, Egress Pipe 1
and Egress Pipe 3 contain the same table entries. To reduce the
table redundancy, we can store some entries in Egress Pipe 1 and
the other entries in Egress Pipe 3, using some hash functions to
divide the traffic into different pipes (Fig. 14). The horizontal table
splitting design described here is very similar to that in §4.3. The
difference is that we split tables between pipelines on the Tofino
chip rather than split tables among clusters in a region. The gen-
eral principle is to split the entries as equally as possible to ensure

201

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Ingress Pipe 1/3

Table C Table D

Egress Pipe 1/3

Table B

Ingress Pipe 0/2

Table A

Egress Pipe 0/2

Table D

Figure 15: Mapping large tables across pipelines.
that traffic carried by each pipeline is balanced. For example, we
can split entries according to the parity of VNI or inner Dst IP.

Mapping large tables across pipelines. After pipeline fold-
ing, the tables in Pipeline 0 and Pipeline 2 are the same, and the ta-
bles in Pipeline 1 and Pipeline 3 are the same.The tables in Pipeline
0/2 and Pipeline 1/3 together provide the complete forwarding logic.
Since the memories of each pipeline are isolated, there may be an
imbalanced memory occupation between Pipeline 0/2 and Pipeline
1/3. As shown in Fig. 15, the table lookup order is Table A-B-C-D.
We have placed Table A in Ingress Pipe 0/2, Table B in Egress Pipe
1/3, and Table C in Ingress Pipe 1/3. At this time, there is still some
free space in Pipeline 1/3, but it is not enough for holding the entire
Table D. While there is a large free space in Pipeline 0/2. We place
part of Table D in Ingress Pipe 1/3 to make full use of Pipeline 1/3,
while we put the rest in Egress Pipe 0/2, consuming the remaining
memory of Pipeline 0/2 to store the rest of Table D. By mapping
large tables across pipelines, we break the isolation of resources
between different pipelines and make table placement more free.

IPv4/IPv6 table pooling. It is feasible to allocate dedicated
IPv6 tables alongside IPv4 tables to allow them to be updated in-
dependently from each other. In this way, the expansion of one ta-
ble will not affect the service provided by another table. However,
since the traffic ratio of IPv4/IPv6 is changing constantly, separate
tables may cause memory waste or insufficient memory due to the
inefficient memory occupation. Our strategy is to pool IPv4 and
IPv6 memory resources. For any table with IP as its key, both IPv4
and IPv6 are supported, ensuring that the ratio of IPv4/IPv6 can be
adjusted arbitrarily. Specifically, the IPv4 key can be expanded to a
128-bit to align with the IPv6 key in the same table; or the IPv6 key
can be compressed to a 32-bit to align with the IPv4 key. For the
VXLAN routing table, we choose the first strategy for ease of con-
ducting the LPM search; for the VM-NC mapping table, we choose
the second strategy because it just requires the exact match. The
table pooling strategies can also be applied to other cloud services.

Figure 16: Forwarding table partition with ALPM.

TCAM conservation for large FIBs. Accommodating the en-
tire VXLAN routing table with TCAM can ensure search efficiency.
But the TCAM resource on the Tofino is very limited. Besides, the
memory ratio of TCAM/SRAM is a constant for a chip, but the table
lookup requirements of the LPM or the exact match change over
time. To address this, we implement algorithmic LPM (ALPM) [40]
to flexibly reduce the TCAM usage at the cost of slightly reduced
lookup efficiency and more SRAM usage. As shown in Fig. 16, the

Table 3: Memory occupancy after optimizations.
Table name Match SRAM TCAM
VXLAN routing table 18% 11%
VM-NC mapping table 18%
Sum 36% 11%

entire routing table is partitioned into two levels with the first level
stored in TCAM, indexing the second level stored in SRAM. The
tradeoff between TCAM occupancy and table lookup efficiency
can be made by adjusting the depth of the first level.

Compressing longer table entries. If the key of table entries
is too long, we try to compress it to a shorter hash digest to save
memory space. For example, when building the VM-NC table with
the IP dual-stack, we conduct IPv4/IPv6 table pooling and com-
press the IPv6 key to a 32-bit for alignment. The compression from
128-bit to 32-bit for IPv4/IPv6 table pooling will cause two kinds of
conflicts. The first is between compressed IPv6 and original IPv4,
which can easily be distinguished by using an additional label in
the table entry. The second is between two compressed IPv6 keys,
which can be resolved with an extra small table to hold the conflict-
ing entries containing the complete 128-bit key. When conducting
IPv6 lookup in the VM-NC table, wewill first search the conflicting
table with the 128-bit key, and then the IPv4/IPv6 table with the
32-bit compressed key if there is no item in the conflicting table. Ac-
cording to our experience, the 128-to-32 compression by hashing
will generate very limited conflicts, and thus, the table dedicated
to conflict resolution will not consume much memory.

Memoryusage after optimizations.After the above optimiza-
tions, the two major tables, the VXLAN routing table and the VM-
NC mapping table, can finally be fit in the Tofino chip (as shown
in Table 3). Since we have conducted IPv4/IPv6 table pooling, the
memory occupancy will not further change with the traffic ratio
of IPv4/IPv6. Compared with the case-by-case results in Table 2, in
the 100% IPv4 scenario, the use of SRAM is reduced by 38%, and
the use of TCAM is reduced by 96%; in the 75% IPv4 and 25% IPv6
scenario, the use of SRAM is reduced by 65%, and the use of TCAM
is reduced by 97%; in the 100% IPv6 scenario, the SRAM usage is
reduced by 85%, and the TCAM usage is reduced by 98%.

5 EVALUATION

102

51
26 18

36

389

194

97

156

11
0

50

100

150

200

250

300

350

400

450

Initial a a+b a+b+c+d a+b+c+d+e

Optimization steps

SRAM

TCAM

X
G

W
-H

 m
e
m

o
ry

 o
c
c
u
p
a
n
c
y
 (

%
)

a. Pipeline folding

b. Table splitting between pipelines

c. IPv4/IPv6 table pooling

d. Compressing longer table entries

e. TCAM conservation for large FIBs

Figure 17: Memory usage after step-by-step compression.
5.1 XGW-H Performance
XGW-H is developed on Tofino 6.4T with thousands of lines of P4-
16. We evaluate the single-node performance of XGW-H in terms
of step-by-step memory optimizations, overall memory consump-
tion as well as forwarding performance, which is compared with
XGW-x86. Then, we evaluate Sailfish’s performance in a real de-
ployment, focusing on the long-term packet loss in large cloud re-
gions, the traffic load distribution between pipelines, traffic shar-
ing between hardware and software, and table update frequencies.

202

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Pan et al.

1x

>20x

XGW-x86 XGW-H

T
hr
ou
gh
pu
t

(a) Throughput

25

1800

0

500

1000

1500

2000

2500

XGW-x86 XGW-H

P
ac

ke
t f

or
w

ar
di

ng
ra

te
 (

M
pp

s)

(b) Packet forwarding rate

40

2
0

10
20
30
40
50

XGW-x86 XGW-H

La
te

nc
y

(μ
s)

(c) Latency

Figure 18: XGW-H’s forwarding performance.

1 2 3 4 5 6 7 8
Day

n×10

Pa
ck

et
 ra

te
 (T

bp
s)

Packet rate
1

Pa
ck

et
 lo

ss
(p

er
 ∼

10
¹⁰-

10
¹¹

pa
ck

et
s)

Packet loss

(a) Region A

1 2 3 4 5 6 7 8
Day

n×10

Pa
ck

et
 ra

te
 (T

bp
s)

Packet rate
1

Pa
ck

et
 lo

ss
(p

er
 ∼

10
¹⁰-

10
¹¹

pa
ck

et
s)

Packet loss

(b) Region B

1 2 3 4 5 6 7 8
Day

n×10

Pa
ck

et
 ra

te
 (T

bp
s)

Packet rate
1

Pa
ck

et
 lo

ss
(p

er
 ∼

10
¹⁰-

10
¹¹

pa
ck

et
s)

Packet loss

(c) Region C
Figure 19: Sailfish’s performance in three large cloud regions during a one-week online shopping festival.

Figure 20: Balanced traf-
fic distribution between
pipelines (view of clusters).

1 2 3 4 5 6 7 8
Day

n

Pa
ck

et
 ra

te
 (T

bp
s) Egress Pipe 1 Egress Pipe 3

Figure 21: Balanced traf-
fic distribution between
pipelines (view of time).

1 2 3 4 5 6 7 8
Day

n
XG

W
-x

86
 p

ac
ke

t r
at

e
(G

bp
s)

XGW-x86 packet rate

0.0

0.5

1.0

XG
W

-x
86

 tr
af

fic
 ra

tio
 (‰

)

XGW-x86 traffic ratio

Figure 22: Minority of traffic
hits XGW-x86 which contains
majority of forwarding tables.

Figure 23: Regular updates
and sudden updates of the
VXLAN routing table.

Step-by-step table compression. Fig. 17 shows the memory
occupancy of the VXLAN routing table and the VM-NC mapping
table after step-by-step table compression. Before any optimiza-
tion, the SRAM and TCAM occupancy reaches 102% and 389% (re-
call Table 2). After pipeline folding, the memory occupancy of both
SRAMandTCAM is reduced by half at the cost of sacrificed through-
put. After table splitting between pipelines, thememory occupancy
in each pipeline is further reduced by half. In IPv4/IPv6 table pool-
ing, we extend the IPv4 key to a 128-bit for alignment in order
to conduct the LPM lookup, and therefore, the TCAM occupancy
grows. Meanwhile, we also compress the IPv6 key to a 32-bit for
alignment in the VM-NC mapping table with the exact match. The
result is decreased SRAMoccupancy. Finally, after conductingALPM
for TCAM conservation, the TCAM occupancy is greatly reduced
to 11% while the SRAM occupancy is doubled to 36%.

Table 4: Overall memory resource consumption.
Pipeline Match SRAM TCAM
Pipeline 0/2 70% 41%
Pipeline 1/3 68% 22%
Sum 69% 32%

Overallmemory consumption.Table 4 shows the overall mem-
ory resource consumption of XGW-H considering all the actual ta-
bles. Pipeline 0/2 and Pipeline 1/3 occupy 69% of SRAM and 32%
of TCAM. Our design effectively solves the memory shortage prob-
lem of storingmillions of table entries in programmableASIC chips,
and there is still room for adding future table entries.

Forwarding performance. Fig. 18 shows the forwarding per-
formance comparison between XGW-H and XGW-x86 in terms of

throughput, packet rate and latency. Under roughly the same unit
price, the throughput of XGW-H is more than 20x that of XGW-
x86 (Fig. 18(a)). When the port bandwidth is full, we pressure test
the packet forwarding rate of XGW-H and XGW-x86. As shown in
Fig. 18(b), the packet rate of XGW-H is 72x that of XGW-x86. Even
for very complex cloud service logic, XGW-H can still reach line
rate with packets smaller than 256B, while XGW-x86 reaches line
rate with packets larger than 512B. We test the forwarding latency
of XGH-H and XGW-x86 without background traffic. As shown
in Fig. 18(c), although XGW-H uses pipeline folding to make the
packet pass through one more pipeline, the average latency is still
only 2µs, which is 95% lower than that of XGW-x86. For XGW-H,
the latency varies from 2.173µs to 2.303µs for 128B-1024B IPv4 traf-
fic and from 2.177µs to 2.306µs for 128B-1024B IPv6 traffic.

5.2 Sailfish Performance
Packet drop rate. Fig. 19 shows the performance of Sailfish in
three large cloud regions during a large online shopping festival.
The peak traffic of the three regions are dozens of Tbps. It shows
that Sailfish delivers very stable performance in a production envi-
ronment with only minor packet drop rates from 10−11 to 10−10,
which are six orders of magnitude lower than that of XGW-x86 (re-
call Fig. 5).The ultra-low packet drop rates mainly benefit from the
large safetymargin provided by the Tofino’s high-capacity pipelines.

Traffic load distribution betweenpipelines.Wehorizontally
split traffic between pipelines to reduce the table entries in each
pipeline by half. The split method can be either hashing or leverag-
ing service characteristics with historical data mining. As shown

203

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

in Fig. 20 and Fig. 21, the traffic can be partitioned in a good bal-
ance between pipelines in both cluster and time dimensions. Un-
like CPU overload caused by heavy-hitter flows, it can hardly cause
extreme unevenness between pipelines because the pipeline num-
ber is small and each pipeline has a huge processing capability.

Traffic sharing betweenXGW-HandXGW-x86. Fig. 22 illus-
trates the volume and proportion of traffic carried by XGW-x86 in
Sailfish after conducting the table-sharing strategy. It shows that
in the production environment, XGW-x86 carries a very small por-
tion of cloud traffic (< 0.2‰). That is, the majority of traffic hits
theminority of tables, which is absorbed byXGW-Hwith ultra-low
latency. The remaining few Gbps of traffic can safely be handled
by XGW-x86 without causing any CPU core overload problem.

Table update frequencies. Fig. 23 shows the changes of entry
numbers in the VXLAN routing tables of different clusters during a
month. For most of the time, the table is updated very slowly with
sudden increases of table entries occurring infrequently. Since reg-
ular table updates occur at a relatively low frequency, they can be
handled without challenges. The sudden increases are mainly as-
cribed to the arrival of top customers who purchase a large number
of VMs or conduct a batch of route updates all at once. Although
the sudden changes will potentially affect the stability of our sys-
tem (e.g., causing cluster expansion suddenly), we will be informed
by the top customers and will be aware of them ahead of time in a
real deployment. As long as we can prepare all the updated table
entries before the arrival of the top customers’ traffic, we can still
handle this special case without any risk.

6 EXPERIENCES
6.1 Deployment Experiences
Cluster construction. In a production deployment, the number
of allocated cloud gateways depends on customers’ service require-
ments. Before putting gateways online, all table entries will be
downloaded first from the central controller to all the gateways.
Due to the large number of entries and gateways, table entry in-
consistency between the controller and the gateways may occur
during table population due to software/hardware bugs, misconfig-
uration or insufficient gateway memory [43]. Therefore, periodic
consistency checks are needed. Then, we will deploy probe gen-
erators to produce diverse probe packets covering as many test
scenarios as possible. Finally, we will modify the routes in the up-
stream devices to admit user traffic into the gateway clusters. If the
user traffic is too heavy, we will admit the traffic incrementally.

Cluster management. During the runtime of gateway clus-
ters, we periodically monitor the table water level, traffic rate and
packet loss rate. We have to deploy new clusters in two cases: (1)
the table size exceeds the available memory, and (2) the traffic vol-
ume exceeds the available processing power. Generally, the table
entry growth is easy to predict with linear growth most of the time
and sudden growth informed by top customers ahead of time. By
contrast, traffic growth is difficult to predict.We have to rely on the
safety margin provided by XGW-H to accommodate traffic bursts
and deploy new clusters if the average traffic volume gets too high.
In practice, we will reserve a safe water level for tables in XGW-
H and XGW-x86 to allow tenants to add new entries. When the
water level is close to the safe threshold, we will temporarily close
the sale of the cluster’s resources and consider putting new users in

another cluster or constructing a new cluster. To ensure stable for-
warding performance, each port will also reserve a safe water level
to monitor the traffic rate and packet loss rate. If the packet loss
rate is close to the safe threshold, the controller will be alerted to
take further actions. At online shopping festivals with huge traffic
volumes, we will deliberately raise the safe water level to further
increase the gateway’s allowable throughput by reducing the num-
ber of alerts sent to the controller. Other system metrics such as
CPU, memory and disk utilization will also be monitored.

Disaster recovery. Disaster recovery is designed at different
levels including cluster, node and port. At the cluster level, all the
gateway clusters strictly follow 1:1 backup. The backup clusters
are hot standby with the same configuration as the main clusters.
The health status of the main clusters is monitored in real time and
any anomaly will alert the controller to modify the routes in the
upstream devices for traffic reroute to the backup clusters. At the
node level, when some gateway reports hardware failures or its
safe water levels are approached, the gateway will be put offline
and the other gateways in the same cluster will share the traffic
load of that gateway. If the gateways in the same cluster are all
busy, we will resort to globally reserved cold standby gateways.
At the port level, when a port suffers abnormal jitters or persistent
packet loss, it will be isolated and the traffic will be migrated to
other ports by modifying the routes in the upstream devices.

6.2 Lessons Learned
Is Sailfish ready to serve outside Alibaba? We have invested
considerable man-months into the conception and realization of
Sailfish to fit cloud-scale forwarding tables into the Tofino’s limited
on-chip memories. In Alibaba Cloud, we are driven by the violent
traffic growth and have no choice but to turn to hardware. To date,
Sailfish’s performance has not failed us, so it is worth it. But from
the perspective of small and medium-sized cloud vendors, in the
short term, XGW-x86 may be good enough to solve their problems.
Even if programmable switches are used, they may not face the
problem of insufficient memory resources. But in the long term,
as the cloud business is growing rapidly while CPU performance
improvement is slowing down, we argue that they will face these
problems sooner or later. Hence, we believe Sailfish is not trivial.

What about Sailfish’s long-term viability? Sailfish’s long-
term viability is mainly affected by the trend towards more or less
SRAM/TCAM consumed per Gbps. Generally, the memory con-
sumption (i.e., table size) is decided by the number of VMs while
the traffic rate is decided by tenants’ service requirements. One ex-
treme case is that the number of VMs increases rapidly while the
traffic rate growth stalls. In this case, Sailfish will continuously
be challenged by the memory shortage problem under the rapid
growth of table entries. According to our observation, however,
the traffic rate per VM has been increasing persistently over the
years in Alibaba Cloud, which also means the SRAM/TCAM con-
sumed per Gbps has been decreasing. If such a trend is not going to
be reversed in the future, Sailfish should have long-term viability.

How difficult is the development? P4 is a domain-specific
language [10]. Compared with the XGW-x86 developed with C, the
development process of XGW-H is even slightly simpler, thus the
agile deployment of new services can also be guaranteed. How-
ever, the developers still need to understand the Tofino’s pipeline

204

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Pan et al.

model and memory constraints for further optimizations. Besides,
as a recent innovation, programmable switching ASICs have insuf-
ficient toolchains, such as test tools for code coverage. We needed
to write lots of test cases and manually reviewed the results to ver-
ify the integrity of our functions. We believe a complete toolchain
can promote the development efficiency of programmable ASICs.

How difficult is it to manage the heterogeneous clusters?
Sailfish is a heterogeneous gateway system containing both XGW-
Hs and XGW-x86s. Generally, heterogeneous systems are more
complex and hard to manage compared with homogeneous sys-
tems. The complexity is reflected in different node forms as well as
the consistency and coordination between heterogeneous nodes.
In Sailfish, we try to manage the complexity via building a unified
abstraction layer over the heterogeneous nodes. In this way, the
network operators or the controller are unaware of the low-level
difference between XGW-H and XGW-x86. The past experiences
of managing the homogeneous XGW-x86s can be inherited.

Building stable gateways for a production environment.
For cloud gateways at the central hub of the entire cloud, stabil-
ity and performance are equally important. Failures in cloud gate-
ways will affect a massive number of users and their services. For
example, in our design, forwarding tables are shared between soft-
ware and hardware gateways with a pre-downloaded configura-
tion to guarantee the deterministic lookup performance. However,
in other systems like TEA [24], cache replacements between soft-
ware and hardware are involved in the system to fit frequently used
entries to the hardware switch. Currently, we do not prefer the
cache-based design to avoid cache breakdown and sudden perfor-
mance degradation in some extreme cases. We follow “Occam’s
razor” to protect the simplicity and reliability of our system.

Metadata tweaks for complex cloud services.Cloud services
are complex and we need to use a large amount of metadata to
store the intermediate results during the pipelined table lookups.
However, we notice that the on-chip PHV (packet header vector)
resources where metadata is stored are also scarce, although they
have not been exhausted yet. Therefore, how to optimize the table
lookup logic as well as the metadata organization to reduce the
consumption of PHV is also an interesting topic worth exploring.

7 RELATED WORK
Some previous work has already looked into the design and im-
plementation of the multi-tenant cloud as well as the cloud gate-
way [8, 25, 38, 45]. As the pioneering work of the multi-tenant
cloud, [25] implements a cloud gateway using software to carry
thousands of tunnels, whichmay be sufficient for small-sized cloud
vendors but may not work with major cloud vendors. Protego [38]
proposes a cloud-scale multi-tenant gateway with software node
clustering and flexible tunnel migrating between these nodes, man-
aged by a central controller. Such a scale-out design is surely com-
petent even for large-scale clouds. However, we show in this work
that due to the slowdown of CPU improvement, the CPU core is
likely to be overloaded by heavy-hitter flows, which has been spot-
ted from time to time in Alibaba Cloud. [8] exposes the memory
shortage problem of the cloud gateway to maintain millions of tun-
nels and proposes a hybrid solution with a commercial switch and
a DPDK-based software forwarding node. However, they solve the
memory shortage problem simply by using the x86 node to store

the virtual routing table withmillions of entries.Thus, themajority
of traffic will pour into the x86 node. By contrast, Sailfish absorbs
the majority of traffic with the programmable switches by com-
pressing major tables into the programmable switches and leaving
only the minority of traffic (< 0.2‰) to the software. [45] proposes
a versatile software gateway, but the forwarding performance is
still insufficient for cloud-scale deployment.

Other work [16, 20, 24, 30, 31, 44] builds other stateful network
devices such as load balancers, and some of these devices also lever-
age programmable switching ASICs. They encounter the similar
memory shortage problem to maintain large session states but pro-
vide quite different solutions. For example, in Silkroad [30], the
connection table is compressed by hashing 5-tuples into shorter
digests to fit into the Tofino chip. Since load balancers forward
traffic based on an exact match of the 5-tuples, hashing is indeed
a good option. However, in cloud gateways, longest prefix match
is also needed, thus compression simply by hashing is not enough.
TEA [24] proposes a cache-based approach, using the Tofino’s on-
chip memory as the cache and the external DRAM at the x86 nodes
as the backup memory. The on-chip memory and the DRAM are
connected via fast RDMA channels. Sailfish prefers pre-allocated
table entries to the cache-based design in TEA to avoid cache break-
down and sudden performance degradation in extreme cases to
protect the stability of gateways and the reliability of cloud ser-
vices. Another deficiency of TEA is their need for re-circulation,
which results in the same throughput cost as our solution.

8 CONCLUSION AND FUTURE WORK
We propose Sailfish, a cloud-scale multi-tenant multi-service gate-
way based on programmable switchingASICs designed for Alibaba
Cloud.We share our gains and pains during the deployment of soft-
ware gateways and explain why we turned to hardware in 2017.
To address the memory shortage problem of maintaining large for-
warding tables with the Tofino chip, we propose hardware and soft-
ware co-design for table sharing, horizontal table splitting among
gateway clusters and pipeline-aware table compression for a sin-
gle node. Compared with the software gateway, Sailfish achieves
significant single-node performance speedup at roughly the same
unit price. The experiences and lessons are also provided.

Currently, after horizontal table splitting among gateway clus-
ters, each gateway cluster carries a portion of entries for some ten-
ants. However, in a real deployment, we observe that not all the
entries of tenants are active most of the time. Taking advantage of
this, in the future, we plan to build the “N+1” hierarchical XGW-H
clusters with N cache clusters at the front serving only active en-
tries and 1 backup cluster storing entries of all tenants to handle
the cache miss traffic. The active entries can be identified through
data mining or cache replacements. In this way, we can use fewer
XGW-H nodes to achieve a much higher processing capability. For
example, if only 25% of the tenants’ entries are active, we can build
4 cache clusters (each cluster carries the 25% active entries) and 1
backup cluster (the cluster carries the 100% entries) to provide 4x
performance at the cost of only 2x the number of XGW-H nodes.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
The authors would like to thank the shepherd Vincent Liu and the
anonymous reviewers for their constructive comments.

205

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] 2017. 12.8 Tb/s StrataXGS Tomahawk 3 Ethernet Switch Series.

https://www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56980-series. (2017).

[2] 2020. Cisco Silicon One. https://www.cisco.com/c/en/us/solutions/silicon-one.
html. (2020).

[3] 2020. ECMP Flow-Based Forwarding. https://www.juniper.net/documentation/
en_US/junos/topics/topic-map/security-ecmp-flow-based-forwarding.html.
(2020).

[4] 2020. High-Capacity StrataXGS Trident4 Ethernet Switch Series.
https://www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56880-series. (2020).

[5] 2021. Intel Xeon Processor E7 Family. https://www.intel.com/content/www/us/
en/products/processors/xeon/e7-processors.html. (2021).

[6] 2021. Practice and thinking of migrating entire Alibaba services to the cloud (in
Chinese). https://developer.aliyun.com/article/765369. (2021).

[7] 2021. Tofino: P4-programmable Ethernet switch ASIC that delivers better perfor-
mance at lower power. https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series/tofino.html. (2021).

[8] Mina Tahmasbi Arashloo, Pavel Shirshov, Rohan Gandhi, Guohan Lu, Lihua
Yuan, and Jennifer Rexford. 2018. A scalable VPN gateway for multi-tenant
cloud services. ACM SIGCOMM Computer Communication Review 48, 1 (2018),
49–55.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace packet
processing. In 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 5–16.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014.
P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamor-
phosis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99–110.

[12] K Costello and M Rimol. 2021. Gartner Forecasts Worldwide Public
Cloud End-User Spending to Grow 23% in 2021. Gartner. Available on-
line: https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-
forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
(2021).

[13] Tom Coughlin. 2020. Impact of COVID-19 on the consumer electronics market.
IEEE Consumer Electronics Magazine 10, 1 (2020), 58–59.

[14] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Osterweil, and
Michael Bailey. 2014. Measuring ipv6 adoption. In Proceedings of the 2014 ACM
Conference on SIGCOMM. 87–98.

[15] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. Elastras: An elastic,
scalable, and self-managing transactional database for the cloud. ACM Transac-
tions on Database Systems (TODS) 38, 1 (2013), 1–45.

[16] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A fast and reliable software network load
balancer. In 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16). 523–535.

[17] Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye, Lei Wang, Wansheng Zhang,
DaxiangKang, Biao Lyv, PengCheng, and JimingChen. 2020. VTrace: Automatic
Diagnostic System for Persistent Packet Loss in Cloud-Scale Overlay Network.
In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 31–43.

[18] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ail-
amaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging scale-
out workloads on modern hardware. Acm sigplan notices 47, 4 (2012), 37–48.

[19] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 51–66.

[20] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu, Guohan Lu, Jitendra Pad-
hye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud scale load balancing with
hardware and software. ACM SIGCOMM Computer Communication Review 44, 4
(2014), 27–38.

[21] Gary Garrison, Sanghyun Kim, and Robin L Wakefield. 2012. Success factors for
deploying cloud computing. Commun. ACM 55, 9 (2012), 62–68.

[22] Stephen D Goglin and Linden Cornett. 2009. Flexible and extensible receive side
scaling. (Sept. 1 2009). US Patent 7,584,286.

[23] Christian Hopps et al. 2000. Analysis of an equal-cost multi-path algorithm. Tech-
nical Report. RFC 2992, November.

[24] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas
Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-intensive network func-
tions on programmable switches. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication. 90–106.

[25] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, AnupamChanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, et al. 2014.
Network virtualization in multi-tenant datacenters. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14). 203–216.

[26] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. 1–14.

[27] Mallik Mahalingam, Dinesh G Dutt, Kenneth Duda, Puneet Agarwal, Lawrence
Kreeger, T Sridhar, Mike Bursell, and Chris Wright. 2014. Virtual eXtensible
Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer
2 Networks over Layer 3 Networks. RFC 7348 (2014), 1–22.

[28] Ilias Marinos, Robert NM Watson, and Mark Handley. 2014. Network stack spe-
cialization for performance. ACM SIGCOMM Computer Communication Review
44, 4 (2014), 175–186.

[29] Christopher McCarthy, Kevin Sullivan, and Rejith Krishnan. 2013. Systems and
methods for private cloud computing. (July 23 2013). US Patent 8,495,611.

[30] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. 15–28.

[31] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
2013. Ananta: Cloud scale load balancing. ACM SIGCOMM Computer Commu-
nication Review 43, 4 (2013), 207–218.

[32] Siyi Qiao, Chengchen Hu, Gordon Brebner, Jianhua Zou, and Xiaohong Guan.
2020. Adaptable Switch: A Heterogeneous Switch Architecture for Network-
Centric Computing. IEEE Communications Magazine 58, 12 (2020), 64–69.

[33] Martin Raab and Angelika Steger. 1998. “Balls into bins”—A simple and tight
analysis. In International Workshop on Randomization and Approximation Tech-
niques in Computer Science. Springer, 159–170.

[34] Lawrence G Roberts. 2000. Beyond Moore’s law: Internet growth trends. Com-
puter 33, 1 (2000), 117–119.

[35] Theodoros Rokkas, Ioannis Neokosmidis, and Ioannis Tomkos. 2018. Cost and
Power Consumption Comparison of 400 Gbps Intra-Datacenter Transceiver
Modules. In 2018 20th International Conference on Transparent Optical Networks
(ICTON). IEEE, 1–4.

[36] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and JohnWilkes. 2011. Cloud-
scale: elastic resource scaling for multi-tenant cloud systems. In Proceedings of
the 2nd ACM Symposium on Cloud Computing. 1–14.

[37] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, ShanMuthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-hitter detection entirely in the data
plane. In Proceedings of the Symposium on SDN Research. 164–176.

[38] Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang, Ze Gan, and Sue Moon.
2017. Protego: Cloud-scale multitenant ipsec gateway. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). 473–485.

[39] Neil C Thompson and Svenja Spanuth. 2021. The decline of computers as a
general purpose technology. Commun. ACM 64, 3 (2021), 64–72.

[40] Henry Wang. 2019. Algorithmic longest prefix matching in programmable
switch. (Dec. 17 2019). US Patent 10,511,532.

[41] TimothyWood, Prashant J Shenoy, Alexandre Gerber, Jacobus E van der Merwe,
and Kadangode K Ramakrishnan. 2009. The Case for Enterprise-Ready Virtual
Private Clouds. In HotCloud.

[42] Beibei Wu, Yang Xu, Hongbin Lu, and Bin Liu. 2005. A practical packet reorder-
ing mechanism with flow granularity for parallelism exploiting in network pro-
cessors. In 19th IEEE International Parallel and Distributed Processing Symposium.
IEEE, 8–pp.

[43] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. 2020.
Aragog: Scalable Runtime Verification of Shardable Networked Systems. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
701–718.

[44] Jiao Zhang, Shubo Wen, Jinsheng Zhang, Hua Chai, Tian Pan, Tao Huang, Lin-
quan Zhang, Yunjie Liu, and F Richard Yu. 2020. Fast Switch-Based Load Bal-
ancer Considering Application Server States. IEEE/ACM Transactions on Net-
working 28, 3 (2020), 1391–1404.

[45] Menghao Zhang, Jun Bi, Kai Gao, Yi Qiao, Guanyu Li, Xiao Kong, Zhaogeng
Li, and Hongxin Hu. 2019. Tripod: Towards a scalable, efficient and resilient
cloud gateway. IEEE Journal on Selected Areas in Communications 37, 3 (2019),
570–585.

[46] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. 2019. A closer look at NFV
execution models. In Proceedings of the 3rd Asia-Pacific Workshop on Networking
2019. 85–91.

206

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56980-series
https://www.cisco.com/c/en/us/solutions/silicon-one.html
https://www.cisco.com/c/en/us/solutions/silicon-one.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-ecmp-flow-based-forwarding.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-ecmp-flow-based-forwarding.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors.html
https://developer.aliyun.com/article/765369
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Gateways for Cloud Networks
	2.2 Evolution of Software Gateways
	2.3 Limitations of Software Gateways

	3 Hardware Gateway and Challenges
	3.1 Hardware Options
	3.2 Programmable Switching ASICs
	3.3 Technical Challenges

	4 Design and Implementation
	4.1 Design Overview
	4.2 Hardware and Software Co-Design
	4.3 Table Splitting Among XGW-H Clusters
	4.4 Single-Node Table Compression

	5 Evaluation
	5.1 XGW-H Performance
	5.2 Sailfish Performance

	6 Experiences
	6.1 Deployment Experiences
	6.2 Lessons Learned

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

