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Abstract

Alibaba Cloud’s centralized gateways relied heavily on high-capacity
switching ASICs, but the abrupt halt of Tofino chip evolution in Jan
2023 forced us to seek alternatives that can meet the requirements
of performance, supply-chain security, code reuse, and resource ef-
ficiency. After evaluating multiple options, we developed Albatross,
our 3rd gen cloud gateway based on FPGA and x86 CPUs. Alba-
tross delivers FPGA-based packet-level load balancing to the host
CPUs to prevent CPU core overload, manages large reorder buffers
under high-latency jitters (100ys) during complex cloud service
processing, and resolves head-of-line (HOL) blocking from packet
losses or software exceptions in CPUs. To avoid being overloaded
by heavy hitters due to anomalies or attacks, it also implements
a two-stage rate limiter for millions of tenants with only 2MB of
FPGA memory. To maximize resource utilization, Albatross uses
containerization to host multiple gateway instances and designs a
BGP proxy to lessen the BGP peering overhead on uplink switches
caused by high-density container deployments. After hundreds of
man-months of development, a single Albatross node can process
80~120Mpps of cloud network traffic with an average latency of
20ps, reducing gateway and sandbox infra costs by 50%.
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1 Introduction

Alibaba Cloud leverages a gateway-centric network virtualization
architecture [35]. The gateway clusters need to manage the im-
mense traffic surges of tens of Tbps, including inter-VPC, VPC-to-
IDC, VPC-to-Internet traffic, to serve millions of tenants. Initially,
we built the gateway clusters using x86 servers. Although the over-
all performance could be scaled horizontally, the slow progress of
single-core CPU performance, coupled with RSS-based traffic distri-
bution [20], failed to address the performance stability issues [31].
Specifically, heavy-hitter flows from dominant tenants could over-
load a single CPU core, impacting other tenants’ traffic hosted on
the same core [27, 34]. The Tofino chip [3, 4], with its per-pipeline
processing capability of up to multi-Tbps, brought significant im-
provements to cloud gateway stability. Additionally, the cost per
Tbps of Tofino switches [29] was budget-friendly to cloud vendors.
Although the limited on-chip resources of Tofino (e.g., PHV, TCAM,
SRAM, and pipeline stages) posed challenges for deploying the
complex cloud network services for millions of tenants [26, 31], we
addressed them in our Sailfish [31] gateway (Tofino-based) through
a series of techniques, such as pipeline folding. We adapted well
with Tofino, evolving our network virtualization architecture based
on the Tofino 2 and 3 roadmap. Unfortunately, in Jan 2023, Intel
announced the discontinuation of Tofino chip development [28].
Given that our Sailfish gateway had fully committed to the Tofino
technology stack, we began contemplating how to address the per-
formance vacuum left by Tofino.

When selecting the next-gen gateway solution, our first prior-
ity was achieving the high performance needed for cloud-scale
gateways after Tofino’s unavailability. Secondly, after experienc-
ing Tofino’s supply-chain disruption, we become more cautious in
selecting network ASICs, hoping to choose ones with high avail-
ability and no potential supply-chain risks. Thirdly, over the past
two generations of gateways, we have accumulated a substantial
amount of code that has been validated in production. We aim to
maximize code reuse, avoiding reinventing wheels and accelerating
time to deployment. Lastly, in previous gateway deployment, each
service team (e.g., VPC and SLB teams) managed their own gate-
ways. Cluster utilization was often low and costs were high. For the
new gateway, we aim to achieve more efficient resource utilization
and to eliminate fragmented operations by separate teams.

With the above requirements, we explored numerous chips and
technical solutions. Initially, we sought ASIC alternatives to Tofino
but found no product by early 2023 that could fully replace Tofino in


https://doi.org/10.1145/3718958.3750473
https://doi.org/10.1145/3718958.3750473

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

terms of P4 compatibility, compiler stability and chip resources. We
also considered an ASIC + DPU solution, which was also used in our
edge gateway LuoShen [30], but it increased operational complexity
and risked DPU overload due to varying ASIC-to-DPU bandwidth
convergence. With the DPU market growing rapidly, we also ex-
plored server + DPU solutions to offload the gateway data plane
to the DPU. However, DPU is typically designed for server-side
applications (e.g., vSwitch [32]) and has ample flow table resources
for exact matching but often lacks sufficient LPM resources for
gateway route lookups (e.g., VXLAN routing table [31]). Moreover,
the highly segmented DPU market also raises our concerns about
supply-chain issues similar to Tofino. After considering all these
factors, we ultimately chose a solution Albatross that uses FPGA to
accelerate certain capabilities for the x86 gateway while maximiz-
ing the reuse of previous x86 gateway code. FPGA also allows to
add more customized features to meet diverse tenant demands.

To address CPU core overload with RSS, we built an NIC pipeline
on FPGA to implement packet-level load balancing (PLB), spraying
packets across CPU cores at the ingress and reordering them at
the egress. Although PLB has been implemented in early network
processors [1, 21], Intel’s DLB [36], and some DPUs (e.g., Octeon
10 [14]), we are the first in the industry to extend PLB capability
to external processors across chips. This makes Albatross highly
scalable, as its capacity can grow linearly with the latest Intel or
AMD CPUs (e.g., AMD EPYC 9965 [6]). However, it also brings new
challenges, including large reordering buffer management triggered
by significant latency jitters in CPU processing and reordering
buffer Head-of-Line blocking caused by packet loss at the CPU side.
Furthermore, we unexpectedly found that due to the huge size of
cloud network forwarding tables, the performance gap between
PLB and RSS is lower than 1% since Albatross under these two
modes experience similar cache hit rate, prompting us to focus
more on DRAM optimization.

Although PLB reduces the probability of single-core overload, in
extreme cases, an anomaly or attack flow may overload the entire
gateway after being load-balanced by PLB. We protect the CPU
by identifying abnormal heavy-hitters inside the FPGA. However,
allocating a meter table entry for each tenant to enforce rate limit-
ing would exhaust the FPGA’s on-chip SRAM. To address this, we
designed a two-stage rate limiter that can perform rate limiting
for millions of tenants with only 2MB SRAM. Additionally, the
sampling and pre-check mechanism are employed to resolve false
rate limiting on small flows caused by hash collisions.

To improve gateway utilization, we deploy different gateways
as containers on x86 servers, virtualizing and partitioning FPGA
NIC resources among containers. Containerization also introduces
challenges, such as BGP peering overhead on the uplink switch’s
control plane due to increased container density. We optimized this
with a BGP proxy, which reduces the number of BGP peers greatly.

Our main contributions are listed as follows:

o As a cloud vendor that relies on centralized gateways, we shared
our first-hand thoughts and actions on the gateway evolution in
the post-Tofino era. According to our information, many cloud
providers are following Sailfish to build their cloud networks. The
industry also faces challenges due to the performance vacuum
left by Tofino.
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e We proposed a series of techniques in the data plane, including
packet-level load balancing and gateway overload protection, to
prevent the risk of single-core overload. Notably, we are the first
in the industry to design an approach that opens PLB capability
to external chips, enabling the gateway’s capacity to scale with
the latest server CPUs.

o We are the first in the industry to deploy a cloud gateway through
containerization. By using a BGP proxy, we avoided overloading
the control plane CPU of the uplink switch due to high-density
container deployment.

o Albatross has been deployed in Alibaba for over one year, pro-
viding 80~120Mpps throughput and 20us latency on a 2023 CPU.
Through containerization, we reduce the infra costs by 50%. We
also provide rich experiences and lessons.

2 Background and Motivation
2.1 Evolution of Alibaba’s Cloud Gateways

Alibaba Cloud uses a centralized gateway architecture to host mil-
lions of tenants [31, 35]. Initially, to rapidly launch various services,
x86 clusters were used for quick gateway deployment. But as ser-
vices and traffic grew, Tofino chips [13] were introduced to accel-
erate stateless services. Currently, both types of gateways coexist,
but each has faced challenges during their evolution.

1st gen x86-based cloud gateways are versatile but limited
by single-core performance and NIC port speed. x86-based
gateways offer good programmability to support rapid iterations
of cloud network services and can boost gateway cluster’s perfor-
mance via horizontal scaling. However, their limited single-core
performance constrains tenant service stability when heavy-hitter
flows or incast occur. Based on our experience, the current cloud
network services process around 1Mpps per core (using kernel by-
pass [19]). Even with upgraded hardware with significantly more
CPU cores, single-core performance still grows slowly. A single
CPU core can easily be overloaded by traffic from certain tenants,
impacting other tenants on the same core, e.g., a VM with a gigabit
vNIC can generate traffic up to 1.6Mpps under stress test with 64B
Ethernet packets, exceeding the single-core performance limit. On
multi-core CPUs, RSS [20] hashes traffic to the CPU cores at the flow
level. Although processing the same flow on one CPU core avoids
out-of-order packets, the CPU will experience load imbalance as
most traffic is concentrated in a few large flows.

Besides CPU core overloading, we also found that NIC port over-
loading can impact tenant service stability, especially on gateways
with lower NIC speeds developed earlier. While CPU core over-
loading affects only some tenant services, NIC port overloading
not only impacts the stability of certain services but also globally
affects control plane protocol maintenance. For example, some gate-
ways use BGP to interact with upstream switches. However, when
the NIC port is congested, it indiscriminately drops packets, in-
cluding control plane protocol messages, leading to control plane
maintenance failures and affecting all services on the gateway.
2nd gen Tofino-based cloud gateways have high throughput
but insufficient on-chip resources and programmability. To
address the stability issues of x86-based gateways, we developed the
hardware gateway Sailfish [31] based on Intel Tofino. The gateway
has been deployed in Alibaba Cloud since 2019 and now covers all
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regions. However, during the operation of Sailfish, we also encoun-
tered the following challenges. First and foremost is the on-chip
resource issue. Tab. 1 shows the current resource consumption of
Sailfish on Tofino. Sailfish uses 4 pipelines, and due to pipeline fold-
ing, resource consumption varies between pipelines 0,2 and 1,3. As
shown in Tab. 1, pipelines 0,2 are most constrained by PHV, while
pipelines 1,3 are limited by SRAM. PHV is used for parsing and
storing packet headers, and due to Alibaba Cloud’s need to support
dozens of network protocols and parse their layers, the demand
for PHV is high. Pipelines 0,2, as the gateway entry points, require
extensive PHV for protocol parsing. SRAM, used for storing for-
warding tables, is also heavily consumed, particularly in pipelines
1,3, which store the VM-NC mapping table for millions of tenants.

Table 1: Tofino’s resource consumption by Sailfish

Pipeline0,2
SRAM [ TCAM [ PHV
69.2% | 40.3% | 97.0%

Pipelinel,3
SRAM [ TCAM | PHV
96.4% | 66.7% | 82.3%

Based on the data above, we conclude that Sailfish’s resource
consumption is nearing its maximum, which severely limits the
evolution of cloud services running on it. Specifically, the resource
challenges for adding new services are: 1) New packet headers: With
PHYV utilization at 97%, adding new headers, such as NSH [33] and
Geneve [22], is nearly impossible and results in compilation errors;
2) Large table capacity demand: As SRAM utilization is also high,
adding new or large tables becomes very difficult; 3) Long-chained
functions: Another issue is adding tables that require long-chained
matching. Even if resources are sufficient, if the number of required
stages exceeds the total stages on the pipeline, compilation will
fail. The deep interdependencies between tables due to complex
services make this issue common [30].

Besides on-chip resource limitations, Tofino faces programma-

bility issues compared to CPUs when processing complex services.
A typical case is Tofino’s lack of self-updating tables. For stateful
services like SNAT, the pipeline needs to update itself based on
the lookup results after packet processing. However, Tofino’s table
entries can only be written by the control plane via the runtime API,
which prevents self-updating operations. Furthermore, since Tofino
does not support timers, table aging has to be done via the control
plane. Due to the limitations of on-chip PHV and stage resources, it
also struggles to support the parsing of complex nested protocols,
such as IP options or Zoonet probing packets [37].
We adapted well with Tofino, but unfortunately, it stopped
evolving. Given Tofino’s significant performance advantages, we
have gradually migrated core services to Sailfish, with thousands
of devices now handling Tbps-level traffic. We are also closely mon-
itoring Intel’s Tofino roadmap, which includes upcoming Tofino
2 and 3 chips that address the on-chip resource limitations. Addi-
tionally, we’ve built a software-hardware collaborative deployment
architecture that uses x86 fallback to overcome Tofino’s resource
and programmability limitations [31]. As our reliance on Tofino
deepens, we have encountered bugs during service deployment and
continue to discuss with Intel for iterative improvement. Before
2023, everything was progressing positively.

Unfortunately, good times are short. In January 2023, Intel an-
nounced the end of Tofino’s evolution [28]. While the exact reasons
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remain unclear, it likely stems from Tofino chips failing to meet ex-
pectations of transforming all switches in data centers through pro-
grammable capabilities. While we acknowledge that Tofino chips
are awesome, they were only used at overlay tunnel endpoint gate-
ways, and during that process, we replaced lots of x86-based gate-
ways. From the perspective of cloud vendors, we have to consider
how to evolve our gateways in the post-Tofino era and how to avoid
the risks of being locked in by the sudden halt in the evolution of
specialized switching ASICs.

Other issues in previous two generations of cloud gateways.
Physical gateway clusters have less than 10% utilization during the
initial setup period or serving a small number of customers due to
their location. The low utilization will be exacerbated particularly
for low-traffic services where backup gateways (at a 1:4 or 1:8 ratio)
are used. Similarly, service-specific sandbox clusters, necessary for
resilience but lacking elastic scaling, add to the initial cost. Although
consolidation of various gateways (like in edge cloud environment)
improved overall utilization [30], it introduced other issues like
increased blast radius and multi-tenant service interference.

2.2 Options After Tofino Stopped Evolving

Below are the various Plan B options we considered after Intel
announced the halt of Tofino’s evolution.

High-performance switching ASICs. We considered alternative
ASIC chips to Tofino. After researching similar switching ASICs
like Broadcom TD4 [10] and Cisco Silicon One Q200 [11], we found
that, as of Spring 2023, although these chips offer strong forward-
ing performance, none could replace Tofino in terms of language
friendliness (which is important to reuse our P4 code), compiler en-
vironment stability, and chip resource specifications. For example,
Broadcom TD4 requires NPL programming, has a limited number
of stages, and does not support pipeline folding. Cisco Silicon One
Q200 has much fewer meter table resources, hindering effective
multi-tenant bandwidth throttling, and its P4 programming model
differs from Tofino’s native P4.

Switching ASICs + DPUs. We also explored the solution of com-
bining DPUs having richer functions with switching ASICs, using
a front-end ASIC to distribute traffic to the DPUs, and leveraging
multiple heterogeneous chips to meet different processing needs
for diverse service scenarios. This solution balances forwarding
performance with rich service support and can evolve based on
our hyper-converged edge cloud gateway architecture [30]. How-
ever, this heterogeneous architecture introduces higher control and
forwarding plane complexity, making maintenance more difficult.
Additionally, the bandwidth convergence ratio between ASIC and
DPUs varies across different service scenarios, leading to issues
where ASIC directs large traffic to overload the DPUs.
Server-based partial offloading to DPUs. We noticed a surge in
the market of feature-rich DPUs in recent years, such as BF3 [15],
Intel IPU [12], AMD Pensando [7], etc. Although they are invented
initially for server-side acceleration (e.g., OVS offloading), when
multiple DPUs are stacked together, they can potentially achieve the
forwarding capability of network devices. Hence, a possible solution
could be to completely abandon switching ASICs and instead use
DPUs to offload part of the x86 gateway data plane logic, creating
a fast/slow forwarding plane. However, this solution poses two
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problems for us: First, the original x86 gateway code is not based
on fast/slow separation, so offloading to the fast plane requires
substantial modifications to the x86 gateway-side code. Second,
current DPUs are mainly designed for server-side acceleration, not
for native network device use. They typically support large flow
tables but may not support LPM forwarding (e.g., BF3) or may
conduct software LPM rather than using TCAM (e.g., IPU), which
severely degrades the LPM performance of the cloud gateway (such
as VXLAN routing lookups) at the traffic convergence point.
Server-based full offloading to DPUs. In fact, some DPUs have
started to support P4 programming [7], which led us to consider
whether we could offload the entire data plane logic of the Tofino
gateway to DPUs, with the x86 gateway CPU only responsible for
table entry distribution. The benefit would be maximizing reuse
of our Tofino gateway code. However, despite supporting P4 pro-
gramming, these DPUs still lack sufficient data plane resources
to support the demands of cloud-scale gateways, as they were
originally designed for server-side network acceleration (e.g., Intel
IPU has insufficient LPM resources, which may risk supporting
large L3 forwarding tables). While FPGAs could implement the
complete Tofino-based gateway data plane, the substantial rede-
velopment effort would delay deployment, and their performance
(e.g., throughput and latency) falls short of Tofino’s.

Solutions with packet-level load balancing. Since the bottle-
neck of our x86 gateway is caused by single-core overload due to
RSS, we have also started to focus on packet-level load balancing
solutions in the industry, such as Intel DLB [36] and Octeon 10 [14].
The former requires using some cores of a CPU to generate in-order
sequence numbers, which occupies valuable CPU cores that could
otherwise be used for tenant service processing. The latter uses
on-chip hardware resources for traffic spray and in-order preser-
vation, but can only perform packet-level load balancing for its
on-chip ARM cores. Since Octeon 10 is typically sold as a DPU card,
its power limit (usually 100W) directly restricts the performance
of its ARM cores, restricting its usage for high-bandwidth cloud
gateways. Currently, the packet-level load balancing capabilities in
the market are all integrated on-chip and not exposed via external
interfaces, which limits their usage scenarios.

3 Albatross Overview

3.1 Design Goals

Significant performance boost over 1st gen x86 gateways. If
Tofino is no longer evolvable and no suitable alternative ASICs
are found, we will have to revert to the 1st gen x86 gateway, with
only 25Mpps per gateway unit [31]. Clearly, this cannot fill the
performance gap left by Tofino. Meanwhile, we observed that the
performance of DPUs and CPUs has been growing steadily in recent
years. For example, in 2024, DPU reached 400Gbps [7], and by 2025,
they are expected to reach 800Gbps [25]. These DPUs can provide
up to 1Tbps of I/O when multiple cards are attached to a server
via PCle. As for CPUs, both Intel and AMD have released new
CPUs with a large number of cores. For example, AMD’s EPYC
9005 series [5] can have up to 192 cores per CPU, or 394 cores with
dual-socket deployment. Assuming each core handles 1Mpps, the
performance can reach nearly 400Mpps. Although this is still behind
that of Tofino, it represents a significant improvement compared to
the 1st gen x86 gateways.
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Gateway built with commodity hardware preventing vendor
lock-in. Based on the above analysis, we are inclined to use the
server + DPU solution. However, the unavailability of Tofino has
made us more cautious about the supply-chain risks of ASICs. x86
CPUs are off-the-shelf chips that are readily available, while there
are many types of DPUs, with different vendors sharing the market,
making our choice more prudent. We have paid special attention
to DPU shipment volumes, future roadmaps, and supply-chain
security. Ultimately, to minimize vendor lock-in risks, we have
opted to use FPGA as a replacement for DPUs on Albatross. Unlike
the emerging and fragmented DPU market, the FPGA market is
mature and stable, dominated by two leading vendors (Xilinx and
Altera) in intense competition.

Gateway code reuse as much as possible. After deciding to use
the server + FPGA solution, we began the development of the new
gateway. As a cloud vendor, we aim to reuse validated code from the
previous two generations of gateways, to reduce development effort,
minimize bugs, and shorten time-to-market cycle. As discussed
earlier, the server + FPGA solution has various implementation
choices. For example, if we opt for partial offload to FPGA, the
original x86 gateway code needs to be modified into a fast/slow
forwarding plane, preventing code reuse. If we opt for full offload
to FPGA, since we don’t use a P4-based DPU, the FPGA would need
to implement the entire forwarding logic of the Tofino gateway.
Both options would lead to significant work. Therefore, we adopt a
third option, where the FPGA only accelerates data plane logic (e.g.,
traffic distribution to CPU cores, traffic tagging, reordering, etc),
while all packet processing remains on the CPU. This way, the CPU
can reuse the entire code from the 1st x86 gateway (the P4 code
will continue to be maintained for several years until the 2nd gen
gateways are fully replaced), and the FPGA only handles partial
acceleration, keeping development effort manageable.
Packet-level load balancing to mitigate server CPU overload.
Cloud traffic patterns are difficult to predict and can be highly
bursty. Therefore, the CPU cores need to tolerate sudden traffic
surges. In 1st gen x86 gateways, traffic was distributed by RSS
and caused CPU core overloading by heavy hitters. To reduce the
overload risk, the gateway had to operate with a low water level,
resulting in low resource utilization. To address this, we need to
support packet-level load balancing (PLB), dispatching heavy-hitter
flows across all CPU cores while maintaining per-flow packet order.
Particularly, we implement PLB on FPGA and reserve all the CPU
processing capacity to the gateways’ services.

Multi-tenant performance isolation to ensure tenant SLA.
Albatross must support multi-tenant performance isolation under
extreme conditions. A single tenant’s traffic burst or abnormal
behavior should not affect the traffic processing of other tenants.
While the Tofino gateway can absorb abnormal tenants’ traffic
with its massive pipeline capacity, achieving the same performance
isolation capability based on the server and FPGA architecture of
Albatross presents challenges.

Containerized gateway for better resource utilization. The
previous two generations of gateways were deployed directly with
bare-metal hardware and maintained separately by different service
teams. Each service team had to individually operate the hardware
and consume operational costs of the gateway clusters. The x86
gateway cluster maintained low water level to ease single core
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overload. The Tofino gateway cluster, despite its high capacities,
still required 4-8 gateways for backup and failure recovery, resulting
in high setup costs. To reduce such costs through resource sharing,
we plan to use containerization to virtualize hardware resources
(FPGA and CPU) to support multiple gateway instances.

3.2 System Overview

To achieve the above design goals, we designed the Albatross cloud
gateway platform. Albatross consists of two main components: a
NIC pipeline implemented on FPGA, and containers hosted on the
server CPUs, as shown in Fig. 1.
NIC pipeline. The FPGA-based NIC pipeline implements two func-
tions: inter-core load balancing and gateway overload protection.
For inter-core load balancing, in addition to supporting RSS (i.e.,
flow-level load balancing), Albatross also implements a packet-level
load balancing (PLB) mechanism (see §4.1). In PLB mode, the NIC
pipeline sprays ingress traffic at the packet level to the RX data
queues, which is then processed by the corresponding CPU core.
Since packets from the same flow will be sent to different CPU cores
for processing, out-of-order issues will arise in the egress direction.
To address this, we have specifically implemented a reorder module
in the egress direction to ensure that packets are sent out in order.
PLB helps solve CPU core overload issues caused by heavy-hitter
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flows, incast, and similar scenarios, while also improving the uti-
lization of multi-core CPUs. The challenges of PLB lie in: 1) the
complexity of cloud services and the intricate software stack on
general-purpose CPUs result in significant delay jitters and severe
out-of-order issues; 2) packet drops at the CPU will lead to head-of-
line blocking due to unreleased reorder buffer, which will increase
the overall packet latency significantly.

To alleviate the overload situation when the entire gateway
is saturated due to traffic anomalies or attacks, we specifically
designed a gateway overload protection mechanism (see §4.3) to
safeguard the entire gateway. The implementation consists of two
parts: 1) Tenant overload detection, which is used to detect which
tenant causes the gateway to be overwhelmed. The challenge here
is to detect the root cause among millions of tenants with limited
FPGA resources; 2) Protocol packet prioritization, which allows
control plane protocol packets (e.g., BGP packets) to be handled by
a dedicated priority queue, ensuring them unaffected even when
the entire data plane is saturated.

Fig. 1 shows the flow of packets within the NIC pipeline. Among

them, the basic pipeline (elaborated in appendix §A) implements
packet classification through pkt_dir when packets enter the ingress
NIC pipeline. Specifically, pkt_dir splits the ingress packets into pro-
tocol priority packets (priority pkts) and data packets (RSS pkts and
PLB pkts). These three types of packets are forwarded through dif-
ferent queues/paths. The pkt_dir is programmable, and the classifi-
cation of packets into each type can be configured by the containers.
Specifically, the containers configure whether packets are delivered
to them as whole packets or just as headers. Using header-only
delivery can significantly save PCle bandwidth between the FPGA
and CPU, especially when handling large payload packets (e.g.,
Jumbo frames that have up to 8,500 bytes Ethernet payload [9]). In
addition, certain stateful data plane packets are best not processed
with PLB, such as Zoonet probe packets [37], service health check
packets, and packets for vSwitch to learn cached entries from the
gateway [35]. Their low volume is negligible, and scattering with
PLB would add unnecessary inter-core consistency maintenance
overhead.
Containers. Albatross achieves containerized management and
deployment of gateways through Alibaba Cloud’s customized K8s
components, ACK [8]. By incorporating virtualization techniques,
Albatross addresses the issues of low resource utilization and poor
scalability of the previous two generations of gateways. In Albatross,
the basic unit of container deployment is the gateway pod (GW pod).
A single-role gateway can be deployed within a single GW pod. To
improve overall system resource utilization, multiple gateways for
different services can be deployed as GW pods on the same physical
server. Each GW pod implements the functionality of an individual
gateway. Therefore, each GW pod has CPU cores responsible for the
gateway’s data plane (data cores) as well as CPU cores responsible
for the gateway’s control plane (ctrl cores).

The challenges for containerized gateway lies in: how to realize
high density of GW pods. We found that the increasing density of
gateway instances significantly raises the number of BGP peering
sessions it needs to maintain, putting huge pressure on the the
uplink switch’s control plane CPU. To prevent control plane CPU
saturation, we need to pay special attention to this challenge.
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Figure 3: Packet Load Balance (PLB) Pipeline.

Hardware selection and deployment. Albatross has been de-
ployed in Alibaba Cloud for over one year. The current architecture
and server picture of Albatross is shown in Fig. 2. Albatross uses a
dual-NUMA CPU architecture, with each NUMA containing 48 CPU
cores, and the NUMAs are connected via a UPI bus. Each NUMA is
connected to 512GB of DDR5 memory. Albatross is configured with
a total of 4 2x100Gbps FPGA-based SmartNIC cards, connected to
the NUMAs via PCle Gen4 bus, providing a total I/O throughput
of 800Gbps. Two of the NICs are connected to one NUMA, while
the other two NICs are connected to the other NUMA. Albatross is
also equipped with a 2x25Gbps management NIC, serving as the
management port for both the hardware system and the containers.
It is worth noting that, to quickly build a production-ready gateway
in response to Tofino’s discontinuation, we did not use the latest
CPU model. Instead, we chose an internally widely used server
CPU model for hosting tenant VMs to amortize hardware costs.
Nevertheless, we still followed specific criteria for CPU selection,
which will be detailed in §7.

4 Albatross Pipeline
4.1 Packet-Level Load Balancing

The PLB primarily contains two modules: plb_dispatch and plb_reorder,

responsible for packet spray in the ingress and out-of-order packet
reordering in the egress, respectively.

Packet dispatch. In Fig. 3, the plb_dispatch module sprays ingress
packets to RX data queues in front of the CPU cores in a round-
robin manner. Each GW pod has dedicated CPU cores and data
queues, the spraying of packets from different GW pods does not
interfere with each other. However, packets of the same flow will
be sprayed to different queues and processed by different CPU
cores, causing out-of-order delivery at the egress due to varying
core processing latencies. To resolve this, PLB maintains multiple
order-preserving queues in the egress direction. Before dispatching
packets to CPUs, PLB sequentially inserts their arrival order into
the order-preserving queues. This information is used to verify
the transmission order of packets in the egress by detecting any
disorder. To implement the above order-preserving mechanism,
plb_dispatch tags a meta header for each packet, which includes
a packet sequence number (PSN) to track the arrival order of the
packet. Note that the meta header will be sent along with the packet

to the CPU and subsequently returned to the NICs for packet re-
ordering. Additionally, plb_dispatch sends reorder info to the order-
preserving queue for order verification. The reorder info includes
the PSN. Besides, it also contains a timestamp for time-out determi-
nation as latency jitters and packet drops may occur during CPU
processing. Since we reserve multiple order-preserving queues, the
queue for a packet is selected based on its 5-tuple hash (conducted
in get_ordq_idx in Fig. 3). The PSN is assigned based on the order
within the selected queue.

Packet reorder. The plb_reorder module in Fig. 3 handles packet
reordering in the egress using three key data structures: FIFO, BUF,
and BITMAP. These structures have the same number of copies
(n) and same sizes per copy (4K entries). FIFO: This is the order-
preserving queue, where each element is a reorder info structure.
For every packet arriving in the ingress, an element is appended to
the tail of the FIFO. A packet can be transmitted in order only after
it has been processed by the CPU and its corresponding reorder
info has reached the FIFO head. The FIFO uses a header_ptr (for
dequeue) and a tail_ptr (for enqueue). BUF: A memory buffer that
stores packets and their meta headers after processing by the GW
pod but before transmission. For header-only delivery, only packet
headers and meta headers are stored. BITMAP: A lightweight mirror
of BUF that contains only the minimal information necessary (1
valid bit and PSN) for order-preservation checks. It ensures efficient
hardware implementation of order comparisons, such as verifying
whether the packet at the FIFO head has been processed by the GW
pod.

The plb_reorder module has mainly two functions: legal check
and reorder check. The purpose of the legal check is to read packets
processed by the CPU from the TX data queues, verify their validity,
and write them to BUF and BITMAP memory. Validity is determined
by quickly checking whether the packet’s PSN falls within the
range of packets currently queued in the FIFO. Specifically, if the
meta.psn[11:0] of the packet falls between header_ptr and tail_ptr, it
is considered valid; otherwise, it is deemed invalid. For valid packets,
the packet and its meta header are written to BUF memory using
psn[11:0] as the memory index, and BITMAP is updated accordingly
to indicate that the packet has been written back from the CPU. For
invalid packets (essentially timed-out packets), a best-effort strategy
is adopted for transmission without reordering. Specifically: If it is a
complete packet, it is sent directly. For header-only delivery packets,
the NIC buffer is checked to see if the payload is still retained. If the
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payload is available, the packet is sent; if the payload has already
been released, the header is dropped. It is important to note that
legal check only examines the lower 12 bits of the PSN. As a result,
there may be cases where the packet has already timed out, but its
lower 12 bits still fall within the FIFO range. Such packets will pass
the legal check but will later be identified during the reorder check.
Since the probability of this scenario is low, legal check achieves
efficient validation for the vast majority of packets with minimal
overhead.

The purpose of the reorder check is to continuously monitor the
packet at the head of the FIFO at the FPGA’s operating frequency to
determine whether it has been processed and sent back by the GW
pod. If the packet has been returned, it is transmitted; otherwise,
the check continues until a timeout occurs. There are four possible
cases for reorder check. Case 1: If the FIFO head element has been
queued for over 100ys, it is directly released. According to our
statistics, the processing latency for most cloud gateway services
is less than 50ps. Case 2: If the GW pod has not yet processed the
packet (i.e., the valid bit in the BITMAP is 0), the system continues
to busy-wait. Case 3: If the GW pod has returned the packet, but
the PSN does not match, it indicates a timed-out packet was sent
back and happened to pass the legal check. In this case, the packet
is still sent using a best-effort approach. Case 4: If the GW pod has
returned the packet and the PSN matches, the packet is transmitted
in order.

Reorder queue granularity. A key question worth discussing is:
at what granularity should reordering be performed? A naive ap-
proach is to perform reordering at a per-flow granularity. However,
a cloud gateway typically needs to handle millions of concurrent
flows. Using per-flow reordering would require allocating a sepa-
rate reorder queue for each flow, posing significant challenges in
terms of dynamic buffer management. Albatross instead performs
reordering for a group of flows, which significantly reduces the
number of reorder queues and avoids frequent buffer allocation and
release. Specifically, Albatross maintains 1-8 reorder queues per GW
pod, which each queue contains 4K entries. Generally, pods with
more CPU cores are allocated more reorder queues. Under fixed
resource constraints, Albatross’s design strikes a balance between
two extremes: C1: A larger number of reorder queues reduces the
heavy-hitter size that a pod can tolerate. C2: A smaller number of
reorder queues increases the risks of head-of-line (HOL) blocking.

Here is a discussion of C1 (C2 discussed later). Assume the
FPGA’s buffer size for reorder queues is a constant, increasing
the number of reorder queues reduces the queue length. This also
decreases the maximum packets-per-second (pps) that a reorder
queue can handle, if the maximum processing latency for a packet
is fixed. That is to say, the presence of a heavy-hitter flow with high
pps will lead to severe packet loss. In Albatross’s implementation,
the queue length is set to 4K, ensuring it can buffer 100us packets
at 40Mpps.

Head-of-line (HOL) issues and handling. Since the reorder
queue is a FIFO queue, if the packet at the head of the queue is
not processed, it will block the transmission of subsequent packets,
causing a head-of-line (HOL) blocking issue. Minor HOL issues are
tolerable with the time-out mechanism, but if HOL occurs for a
long time, it will significantly increase the forwarding latency of
subsequent packets and may even cause the BUF queue to become
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full, leading to packet loss. It is important to note that since the NIC
pipeline currently ensures order for processing by external CPU
cores, there are many external factors that could cause HOL, such
as slow CPU processing, rate-limiting packet loss, ACL packet loss,
RX/TX queue congestion, and driver-induced packet loss. Albatross
has invested considerable effort into addressing HOL issues. The
following are the technical details.

1) Using multiple order-preserving queues. Clearly, the HOL
in one order-preserving queue will not affect other queues, which
reduces the overall risk of HOL. We allocate multiple reorder queues
to each GW pod, and the number of reorder queues used by a pod
is proportional to the number of CPU cores. This ensures that the
number of heavy-hitter flows each reorder queue can tolerate is
consistent.

2) Setting a drop flag for the GW pod. Cloud gateways handle
traffic subject to rate-limiting and ACL rules, and packet drop occurs
when these rules are triggered. To prevent HOL, we add a drop
flag in the meta header. When the GW pod triggers such packet
drops, it actively sets this flag to notify the NIC pipeline to drop the
packet. At this point, the NIC pipeline actively releases the reorder
resources, including FIFO, BUF, and BITMAP.

3) Ensuring that the cloud gateway’s processing latency is less
than 50ps. Generally, we assume that the processing latency for
major cloud network services is less than 50us. However, during
the adaptation of Albatross, we identified several corner case code
branches. Due to code quality issues, these branches caused for-
warding latency to become excessively high, even reaching the
millisecond level. We have already fixed these code branches.

4) System and driver optimization. We identified and resolved
issues that caused abnormal latency increase at the hardware and
driver levels. For example, we discovered and fixed problems caused
by enabling Automatic NUMA Balancing, insufficient PCIE dri-
ver descriptors, and a too-small DPDK_RTE_MEMPOOL_CACHE,
which led to the abnormal increase in latency.

5) PLB fallback to RSS. If the previous methods do not work
and we are unable to pinpoint the root cause, the GW pod can
dynamically switch from PLB mode to RSS mode to attempt reme-
diation. This method has not been triggered in the current online
deployment.

4.2 PLB Performance Optimization

Intuitively, PLB would seem to utilize cache locality less efficiently
than RSS, which raises concerns that cloud gateways based on
PLB might exhibit worse overall performance compared to first-
generation x86 gateways based on RSS. However, our tests show
otherwise. We first tested the performance of RSS and PLB under a
typical cloud gateway workload, VPC-Internet (definition in Tab. 2),
with 500K concurrent flows, as shown in Fig. 4. The results indicate
that, under 1, 20, and 40 CPU cores, the per-core performance of
PLB and RSS for the cloud gateway workload is nearly identical,
with a difference of less than 1%. Other workloads on the cloud
gateway exhibit similar results. This outcome even exceeded our
expectations. Through analysis, we found that this is due to the
characteristics of cloud gateway workloads. Cloud gateways handle
a massive number of tenants, each with different network configu-
rations, leading to an enormous number of table entries. Moreover,
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the complexity of the workloads results in long table entries, often
hundreds of bytes. Even for a single workload gateway, multiple
cascading table entries are typically involved. According to statis-
tics, table entries in a typical cloud gateway occupy several GB of
memory, far exceeding the approximately 200 MB of CPU cache
available. The large number of concurrent tenant flows causes fre-
quent cache replacements during table lookups, resulting in a low
L3 cache hit rate of about 30%-45%, as shown in Fig. 5. Additionally,
since L3 cache is shared across cores, both RSS (flow-based hash-
ing) and PLB (packet-based spraying) ultimately achieve similar
performance.

The performance test results of PLB have a significant impact on
the model selection of Albatross. VPC-Internet is a highly represen-
tative workload, with an L3 cache hit rate of around 35%, indicating
that our gateway services involve a large amount of memory read
and write operations during forwarding. Therefore, in addition to
considering the CPU cache size for Albatross model selection, we
also place great emphasis on memory performance. For example, we
prefer models with low memory access latency and high memory
frequency. According to our tests, when the memory frequency is
increased from 4800 MHz to 5600 MHz (via BIOS modifications), the
gateway performance improves by approximately 8%. Another op-
timization for gateway performance involves NUMA design, where
we enhance performance by avoiding cross-NUMA scheduling (see
§7). In addition to these, we have also optimized aspects such as
CPU Turbo Boost, DDIO, LLC Prefetch, and Hyper-Threading.

4.3 Gateway Overload Protection
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Figure 6: Tenant overload rate-limiting

Essentially, Albatross is still a software-based gateway, and its
forwarding performance lags behind Tofino, making it vulnerable
to heavy-hitter flows. Under extreme conditions, Albatross may
encounter cases such as CPU overload, VF overload, and NIC port
overload, which severely degrade overall forwarding performance
and violate tenant network SLAs. For instance, a traffic surge from
a single tenant, combined with PLB, can overload all CPU cores,
causing packet loss for other tenants due to insufficient CPU re-
sources and breaking SLA guarantees for performance isolation. To
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mitigate the impact of heavy-hitter flows, we employ two gateway
overload protection (GOP) techniques.

Two-stage tenant overload rate-limiting. The first GOP tech-
nique detects which tenants are causing overload through the NIC
pipeline and rate-limits those tenants before their traffic reaches
the CPU. Based on our years of experience in cloud gateway opera-
tions, most CPU overloads are caused by sudden bursts or anomalies
from one or a few dominant tenants. Therefore, the NIC pipeline
must identify these dominant tenants. However, with hundreds
of thousands of concurrent tenants in a cloud network, assigning
rate-limiting meter resources for each tenant on an FPGA would
require over 200 MB of SRAM for 1 million tenants, far exceeding
the available on-chip memory after provisioning resources for PLB
and other capabilities. To address this, we propose a two-stage rate-
limiting scheme to reduce resource consumption. Specifically, in the
first stage (color_table), we allocate a rate-limiting table with 4K en-
tries for all tenants. Incoming traffic is indexed into the color_table
using VNI%4K and subjected to coarse-grained rate limiting, where
VNI is the identifier of a tenant. If the traffic exceeds the preset limit,
the excess is marked and sent to the second stage (meter_table) for
fine-grained rate limiting. In this stage, the marked traffic is hashed
based on VNI and rate-limited in the corresponding entry of the
meter_table. This two-stage rate-limiting scheme reduces on-chip
SRAM usage for 1 million tenants to just 2 MB (100X reduction
from the naive approach).

It is worth noting that the second-stage meter_table is imple-
mented as a hash table. Hash collisions may cause some innocent
tenants to be incorrectly rate-limited. For example, the overflow
traffic from the first-stage color_table might include innocent ten-
ants, and these tenants could hash to the same entry that a dominant
tenant occupied in the second stage (If two dominant tenants collide,
rate-limiting them does not pose any issues). To address this, we
add a pre_check table before the two-stage rate limiter. This table
identifies heavy hitters detected in the meter_table with sampling
(heavy hitters are more likely to be sampled due to their higher
packet rates), then enabling early rate-limiting of heavy hitters in
the pre_meter table. This prevents dominant tenants from affecting
others in the meter_table due to hash collisions. Since the hash
collisions happen at a low probability and the early rate-limiting
of heavy hitters takes effect quickly (in one second), the impact
of incorrect rate-limiting of innocent tenants is acceptable in pro-
duction. Since Albatross was deployed, there have been no tenant
complaints about incorrect rate-limiting issues. To further reduce
the probability of innocent tenants’ rate-limiting in the future, we
plan to utilize the CPU to detect heavy hitters in advance and then
install them to the pre_check and pre_meter table for avoiding
triggering hash collisions in the meter_table. Both pre_check and
pre_meter have only 128 entries, consuming very limited resources.
Additionally, certain top-tier customers who do not want to be
rate-limited can be configured in the pre_check table to bypass all
rate-limiting logic.

High priority assignment for protocol packets. The second
GOP technique assigns higher priority to protocol packets and
routes them through dedicated RX/TX priority queues. This ap-
proach is taken because packet loss for protocol packets can directly
impact the operational status of all containers on the gateway. For
instance, GW pods on Albatross use BGP and BFD protocols to
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scheme. Each GW pod establishes BGP peers with uplink
switch.

maintain connections with upstream switches. BFD [24] is a fast
link failure detection protocol that can accelerate the convergence
speed of BGP. Typically, losing three consecutive BFD probe packets
is enough to trigger a link failure detection and disable the entire
link. Therefore, in scenarios where Albatross experiences traffic
overload, even a few lost BFD packets can result in a link failure
being detected, causing BGP to register a neighbor link failure. In
Albatross, protocol packets can be configured in pkt_dir to use
priority queues.

5 Albatross Container

Albatross implements container support in the NIC pipeline, en-
abling the concurrent operation of multiple gateways on a single
server to improve overall server utilization.

NIC virtualization to support multiple gateway containers. As
multiple GW pods share the same NIC pipeline, the NIC resources
need to be partitioned to allow each GW pod has its own NIC
resources. We primarily adopt the following approaches to achieve
NIC virtualization: Splitting NIC queue resources and table entries
and allocating them to different containers, thereby enabling the
virtualization of NIC network functions. For example, Albatross
partitions reorder queues and packet direction tables, assigning
portions of these resources to different GW pods. This way, each GW
pod exclusively has its own NIC resources and remains unaware
of the presence of other GW pods. The resources allocated to each
GW pod are typically proportional to its capacities. For instance,
a 40-core GW pod is assigned twice as many reorder queues as a
20-core GW pod. To ensure high performance and minimize the
overhead introduced by virtualization, we employ hardware-based
virtualization through SR-IOV (As shown in Fig. B.1 in appendix §B).
Specifically, we virtualize multiple VFs on the NIC’s PF, assigning
them to different containers. To ensure robustness, each GW pod
uses 4 VFs (As shown in Fig. B.2 in appendix §B) and allocates n
RX/TX queue pairs per VF, where n equals to the number of data
cores of the GW pod.

Increasing container density with BGP proxy. When develop-
ing containerized gateways, we encountered a significant challenge:
the density of containers was constrained by the BGP peer capacity
of the uplink switch (in our gateway-centric architecture, multiple
gateways are attached to a group of switches and traffic is routed
to the gateways via these switches). Since cloud gateways need
to advertise VIP routes externally, each gateway must establish a
BGP peer with the switch. However, with containerized gateways,
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the number of BGP peers that each physical server needs to es-
tablish increases significantly. We discovered that the bottleneck
for the density of containerized gateways (i.e., the number of GW
pods a single physical server can host) lies in the number of BGP
peers supported by the switch. Currently, the safe threshold for
the maximum number of BGP peers supported by the switch is 64.
Exceeding this threshold can lead to slow route convergence in ab-
normal situations (e.g., switch restarts, unexpected power outages,
or hardware failures), requiring up to tens of minutes for route
convergence. Given that the maximum number of interfaces on a
switch can connect to 32 Albatross servers, under the 64 BGP peer
limitation, each Albatross server can host at most two containerized
gateways. To overcome this limitation, we developed a BGP proxy
solution, as illustrated in Fig. 7. Unlike the original approach, where
each GW pod directly established an eBGP connection with the
switch, the BGP proxy solution introduces a BGP proxy pod that
handles the eBGP connection with the switch. All GW pods on the
server establish iBGP connections with the BGP proxy pod instead.
This approach reduces the number of BGP peers established with
the switch to 1/m, where m is the number of GW pods on the server.
For deployment, we adopt a dual BGP proxy setup per server to
enhance robustness.

6 Evaluation

Table 2: Four typical cloud gateway services.

# | GW Services Explanation

1 | VPC-VPC A VM accesses another VM in the same VPC.

2 | VPC-Internet A VM in VPC accesses Internet.

3 | VPC-IDC A VM in VPC accesses one customer’s private data

center by hybrid cloud.
4 | VPC-CloudService | A VMin VPC accesses cloud services provided by cloud
vendors (e.g., log stores, databases, efc).

Table 3: Albatross’s performance evaluation with different
gateway services.

[ GW service | VPC-VPC | VPC-Internet | VPC-IDC [ VPC-CloudService |
[ Packet Rate [ 128.8Mpps [ 81.6Mpps [ 119.4Mpps [ 126.3Mpps ]

Table 4: NIC pipeline latency Table 5: NIC pipeline resource

measurement. consumption.

Module RX (us) | TX (us) Module LUT | BRAM
Basic Pipeline 0.58 0.84 Basic Pipeline | 42.9% 38.2%
Overload Det. 0.10 0 Overload Det. | 2.0% 0%

PLB 0.05 0.35 PLB 12.6% 5.0%
DMA 3.17 2.98 DMA 2.5% 1.3%
[ Sum [ 390 T 417 ] [ Sum [ 60.0% | 445% |

Overall performance and overhead. We evaluate the overall
forwarding performance by testing four typical gateway services
(listed in Tab. 2) on one Albatross server. For each gateway service,
we allocate two 46-core GW pods. Each pod is within a NUMA
node, configured 44 data cores and 2 ctrl cores. We generate and
send 500K flows (with 256B packets) for each GW pod for all the
performance tests. As shown in Tab. 3, the overall throughput of
Albatross is around 120Mpps. Since the four gateway services have
different processing code and forwarding tables, they experience
different packet forwarding rates. The VPC-Internet performance
degradation (81.6Mpps) comes from the significant longer process-
ing code and more lookup tables than other gateway services.
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Table 6: Albatross’s comparison with our 2nd gen gateway (Sailfish). Albatross™ is the evolution of Albatross on our roadmap.

Gateway | # of LPM rules | Elasticity | Price/device | Price/AZ | Throughput | Packet Rate | Latency
Sailfish 0.2M days 1x 32x 3200 Gbps 1800 Mpps 2 us
Albatross >10 M 10 seconds 2x 16x 800 Gbps ~120 Mpps 20 ps
Albatross™ >10 M 10 seconds 2.4x 9.6x 3200 Gbps ~480 Mpps 20 ps
c
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Figure 8: Load balancing com-

parison. son.

We also evaluate the latency and resource consumption of the

FPGA NIC pipeline, shown in Tab. 4 and Tab. 5 respectively. We
can see that the overall RX+TX latency introduced by NIC pipeline
is around 8 us, most consumed by DMA procedure. The extra la-
tency introduced by PLB and overload detection is 0.5 ps, which
is only a small part of the NIC. Each FPGA contains 912,800 LUTs
and 265 Mbits BRAM. The resource consumed by PLB and over-
load detection is 14.6% LUT and 5% BRAM. While basic pipeline
implements major traditional NIC functions (e.g., parser, deparser,
etc) and a payload buffer (which stores packet payload when using
header-payload-split mode), it consumes the majority of LUT and
BRAM resources on FPGA.
Comparison with 2nd gen Tofino-based gateway (Sailfish).
We conduct a head-to-head comparison of Albatross to Sailfish [31],
shown in Tab. 6. The main advantages brought by Albatross are
threefold. First, Albatross can accommodate extra-large forwarding
tables as it can use hundreds of GB DRAM memory. For example,
it can hold >10M LPM rules (for VXLAN routing table) while Sail-
fish can only hold about 0.2M. Second, Albatross has enhanced
elasticity and can prepare a GW pod in 10 seconds while Sailfish’s
elasticity is tens of days as it must prepare physical clusters. Third,
although Albatross has a higher per-device cost (2x), the total cost
of setting a new available zone (AZ) has been halved due to Alba-
tross’s containerization support (discussed at the end of this section).
Compared to Sailfish, Albatross has a significant forwarding per-
formance regression in throughput (by 4x), packet rate (by 18x),
and latency (by 10x). This is a predictable degradation since Sailfish
employs a programmable switch architecture that can process pack-
ets at line rate while Albatross employs a CPU-based architecture
that is short of processing performance. Note that the packet rate
regression (by 18x) is worse than the throughput regression (by
4x), this is because Albatross has bottleneck at CPU that makes it
impossible to achieve line rate with small-size packets.

Readers may have concerns about Albatross’s forwarding per-
formance regression. We would like to respond it from two as-
pects. First, cloud gateway clusters can be classified into two cate-
gories, i.e., throughput-sensitive (e.g., > 100Gbps) and throughput-
insensitive (e.g., < 100Gbps). According to our statistics, 91% gate-
way clusters of Alibaba Cloud are throughput-insensitive, which
is the major demand that Albatross aims to meet. Second, the 9%
throughput-sensitive gateways can be met by the evolution of Al-
batross. On our roadmap, the next gen of Albatross, denoted as
Albatross* (with 20% increased per-device cost), would improve

Figure 9: P99 latency compari-

Figure 10: Multi-core util. rate
comparison.

Figure 11: PLB latency distri-
bution in production.

the throughput to 3200Gbps and packet rate to 400Mpps by em-
ploying more powerful latest FPGAs and CPUs in the market. In
a word, the primary goal of Albatross is to rapidly validate a new
alternative gateway platform and meet the majority of actual de-
mand, leaving the subsequent evolution (Albatross®) to meet the
left throughput-sensitive demand.

PLB performance. Compared to RSS, PLB has the advantage of
mitigating CPU single-core overload caused by heavy hitters. As
shown in Fig. 8, in a scenario with 500K background flows and
three forwarding cores with 10% single-core utilization, increasing
a heavy hitter’s rate from 0 to 130% (relative to the maximum
throughput of a single core), RSS can only hash this heavy hitter
to one core, resulting in core 1 overload and significant packet
loss. In contrast, PLB evenly distributing the heavy hitter across
three cores, thus avoiding the single-core performance bottleneck.
In real deployment scenarios with a larger number of forwarding
cores (e.g., 40 cores), the tolerance of heavy hitters can be enhanced
by tens of times. The improved multi-core load balancing by PLB
also enhances gateways’ tail latency. As shown in Fig. 9, the P99
latency of PLB outperforms RSS when the gateway load exceeds
75%. There is no significant difference in latency when the gateway
load is below 75%, since we simulate real cloud network‘s micro-
burst traffic that makes the gateway processes packets without any
burden when gateway load is not high.

PLB performance in production deployment. Since Albatross
has been deployed in production, we collect operational data to
evaluate the effectiveness of PLB. First, we evaluate the multi-core
load-balancing effectiveness. We collect two production gateways’
CPU utilization in one week and calculate the standard deviation
among cores. The two gateways adopt PLB and RSS respectively,
each with around 20% load. As shown in Fig. 10, the standard devia-
tion of RSS fluctuates significantly and is much higher than that of
PLB. Based on our observation, this is because cloud gateways ex-
perience numerous micro-bursts, which can increase the utilization
of a single core by about 50% under RSS in less than one second.
Such micro-bursts, when spread to tens of cores by PLB, have a
negligible impact on the utilization of each core.

Second, we evaluate the latency behavior and head-of-line (HoL)
handling. We choose four Albatross gateway pods, A (20% load), B
(17% load), C (6% load), and D (5% load), and analyze their packet
processing latency distributions, as shown in Fig. 11. It indicates
that over 99% of packet processing latencies are less than 30us, with
higher latency’s distribution decreasing exponentially. Additionally,
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loss occurs on the CPU (e.g., ACL blocking), we use an active drop
flag in PLB meta header to notify the NIC pipeline to release the
reorder resources occupied by the dropped packets. As shown in
Fig. 12, the active drop flag mechanism reduces the occurrence of
HoL by several dozen to hundreds of times per second.

Tenant overload rate-limiting performance. We conduct two
sets of comparative experiments. The experimental setup includes
four tenants with initial rates of 4, 3, 2, and 1 Mpps (total 10Mpps),
respectively. The first tenant (i.e., dominant tenant) increases its
rate to 34 Mpps at the 15th second, while the other three tenants
maintain their rates (total 40Mpps). The four tenants’ traffic is
sent to an Albatross GW pod that adopts PLB and has a maximum
throughput of 20 Mpps. The tenant overload meters are set 10Mpps,
with first stage set 8 Mpps and second stage set 2 Mpps. As shown
in Fig. 13, without tenant overload rate-limiting, the total traffic of
the four tenants (40 Mpps) at the 15th second exceeds the overall
throughput (20 Mpps), causing the CPU to indiscriminately drop
packets, leading to a 50% packet loss for all tenants. This means
that a dominant tenant’s traffic burst affects other tenants’ SLAs.
In contrast, with tenant overload rate-limiting, as shown in Fig. 14,
the traffic of tenant 1 is directly rate-limited to 10 Mpps in the NIC
pipeline, resulting in a total of 16 Mpps CPU throughput, which
does not exceed the overall throughput. Therefore, the other tenants
are not affected. According to our design, if a dominant tenant and
innocent tenants collide in the second-stage meter_table, leading
to incorrect rate-limiting, we can resolve this issue within a few
seconds by migrating the dominant tenant to the pre_meter for
early rate-limiting.

Benefits of cloud gateway containerization. One significant
benefit of Albatross is the cost reduction by containerization, es-
pecially for smaller gateway clusters. For instance, when setting
up a new available zone, the cloud network team need to build
eight types of gateway clusters (XGW, IGW, VGW, etc.), with four
gateways per cluster. As shown in Fig. 15, in the 1st and 2nd gen
gateway forms, setting up a new available zone (AZ) requires de-
ploying 32 physical gateways. With Albatross, these 32 gateways
can be distributed across 8 Albatross servers, with each server host-
ing 4 GW pods. This reduces the number of servers by 75%. Since
the cost of an Albatross server is twice that of the previous two
generations, the total cost is reduced by 50%. Due to the power con-
sumption of the 1st-, 2nd-, and 3rd-gen single gateway being 500W,
300W, and 900W, respectively, the total power consumption for

Figure 16: Cross/intra NUMA Figure 17: Impact of NUMA
comparison. balancing.

the eight gateway clusters is 12,000W (three 1st-gen clusters, five
2nd-gen clusters), while the total power consumption for 3rd-gen
gateway clusters is 7,200W, which is reduced by 40%.

7 Lessons learned and experiences

NUMA architecture affects Albatross’s performance. Fig. 16 il-
lustrates the gateways’ performance comparison between whether
allocating CPU and memory across NUMA nodes (cross-NUMA) or
inside a NUMA node (intra-NUMA). The results show that cross-
NUMA degrades the VPC-VPC service’s performance by 14%, and
degrades the performance by 3% without any network service. This
degradation is caused by increased latency in memory allocation
and access, unnecessary overhead in maintaining cache coher-
ence, and delays introduced by cross-NUMA scheduling. There-
fore, Albatross requests gateway pods operate within a NUMA
node. However, after we restrict the gateway pod inside a NUMA
node, we still observed unexpected cross-NUMA scheduling un-
der heavy traffic conditions. Fig. 17 shows that there are latency
bursts under 90% load when a gateway pod is restricted to a NUMA
node. This is because typical operating system kernels have the
numa_balancing feature enabled by default, which tries to automat-
ically move tasks and application data closer to the memory they
are accessing [23]. However, since we restrict the gateway pod to
a NUMA node, Albatross could not benefit from this feature. By
disabling numa_balancing, we significantly reduce the maximum
packet latency and the latency jitter.

Performance optimization with PLB meta header. We explored
two alternative strategies that where to attach PLB meta header:
attached at 1) packet head, or 2) packet tail. For the first strategy,
naively inserting the PLB meta to the packet head room will affect
the extensive packet encapsulation and decapsulation. If alterna-
tively placing the PLB meta in the private room of the rte_mbuf
within the DPDK driver, it will introduce extra data copying over-
head, which can degrade forwarding performance by 33.6%. Con-
versely, for the second strategy, placing PLB meta at the packet tail
does not introduce these issues, as cloud gateways will not process
packet tails. For the cases that gateway pods have to set flags in PLB
meta, it will not significantly affect the overall performance since
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such cases’ frequencies are relatively low. Therefore, we select the
second strategy as our final solution.

The migration of existing cloud gateways to Albatross. To
ensure the stability of cloud gateways during migration, we plan to
migrate the gateways according to the following priority sequence:
1) newly established gateway clusters; 2) out-of-warranty gateway
clusters; 3) light-load gateway clusters; 4) heavy-load gateway clus-
ters. Each gateway cluster must undergo staged gray testing prior
to production deployment. Additionally, to ensure high availability,
some core cloud gateways are designed to deploy both container-
based and traditional physical forms during the migration, serving
as mutual primary and backup gateways.

Leveraging container elasticity to enhance the stability of
cloud gateways. We will build redundant Albatross clusters in
advance. Facing the unexpected growing load that approaching the
throughput capacity, Albatross can leverage the container elasticity
(10 seconds) to quickly prepare a new GW pod (with more CPU
cores and reorder queues) and then migrate the traffic to the new
GW pod in case of violated network SLAs. In order to guarantee
no service disruption, before the original GW pod withdraw the
BGP route, the new GW pod has to advertise the BGP route first
and validate packets are processed normally for a while (e.g., 30
seconds). Compared to traditional physical gateway forms, which
usually requires tens of days to prepare a new gateway cluster,
Albatross’ elasticity can be used to enhance the capability to handle
traffic bursts and improve the overall system stability.

Stateful network function (NF) support with PLB. Apparently,
Albatross can support stateful NFs with RSS mode. Compared to
stateless NFs, the stateful NFs (e.g., SNAT and Layer-4 load balancer)
need to maintain and update flow states (or sessions) for correct
forwarding. Using PLB mode, the multi-core write operation to the
same flow state brings additional state synchronization overhead.
Based on our experience, whether such state synchronization over-
head has a significant impact on forwarding performance depends
on whether a stateful NF is write-heavy (i.e., each flow has to write
flow states frequently, especially per-packet write operation) or
write-light (the opposite of write-heavy). If one stateful NF is write-
light (e.g., establishment and termination of sessions), we found
that the NF’s performance scales (approximately) linearly with the
number of CPU cores, which is very promising. However, if one
stateful NF is write-heavy (e.g., per-session counters), we found
that the lock contention for per-flow state write operation leads to
significant performance degradation, and the more CPU cores we
use, the worse of overall performance. We also found that even if
we remove the locks for per-flow state write operation, such overall
performance degradation remains largely unchanged. The reason is
that the multi-core cache coherence mechanism leads to significant
cache-misses and cache-references. Therefore, the most important
optimization for write-heavy stateful NFs is minimizing locks used
and multi-core cache contention. For example, we can: 1) transform
shared-states into local-states (e.g., per-core states), and 2) partition
CPU cores into groups and spray packets across a subset of cores..
Future FPGA offloading plan. We reserve sufficient room of
FPGA usage for future evolution since the cloud gateways must
continuously develop new features to meet growing business de-
mands. In our current plan, the following three categories of op-
erations will be offloaded to the FPGAs. 1) Session offloading. As
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discussed above, the write-heavy stateful NFs (session-based) with
PLB mode experience significant performance degradation due to
state synchronization. However, if these stateful NFs use RSS mode,
they cannot benefit from multi-core load balancing and suffer from
single-core heavy-hitter impact significantly. Therefore, we plan
to offload the sessions to FPGAs to improve Albatross’s ability to
handle stateful NFs; 2) Computation-intensive operations. Since CPU
is usually the bottleneck of Albatross’s processing capability, we
plan to offload some operations to save the CPU power, e.g., en-
cryption/decryption, traffic counting/metering, etc; 3) Operational
functions. We also plan to offload some tenant-transparent functions
to FPGAs, e.g., billing, firewalls, etc.

8 Related Work

Different cloud vendors have developed distinct network virtualiza-
tion architectures. For example, Azure uses an architecture based
on distributed vSwitches [17] and offloads processing to Smart-
NICs [18]. Overflow traffic on SmartNICs is handled by a remote
DPU resource pool [2]. In Andromeda, Google employs Hover-
board to cache the long tail of low-bandwidth flows, reducing the
overhead of controller reconfigurations [16]. Alibaba Cloud adopts
a centralized cloud gateway to handle east-west and north-south
traffic forwarding [35]. Initially, x86 server clusters were used to im-
plement the cloud gateway, but later it transitioned to Tofino [31],
which offers high performance and cost-effectiveness. However,
with the discontinuation of Tofino’s evolution, we are pushed to
update our technical roadmap.

When falling back from Tofino to x86 CPUs, the challenge is
the single-core bottleneck caused by RSS [20]. Packet-level load
balancing (PLB) is a common industry solution. For example, early
network processors dispersed packets within the chip and reordered
them using hardware logic [1, 21]. Since processing was confined
to the chip and L3 forwarding logic was relatively simple, latency
jitters were relatively low, and reorder buffer design was straight-
forward. In contrast, Albatross’s reorder buffer reserves up to 100us
of queuing delay to accommodate the latency jitter caused by com-
plex cloud network workloads on CPUs. Intel’s latest CPUs include
DLB capabilities, but implementing DLB consumes additional CPU
cores for tasks like per-packet sequence tagging [36]. Albatross
offloads PLB entirely to FPGA, preserving CPU resources for ten-
ant workloads. DPUs like Octeon 10 also support PLB, but only for
their internal ARM cores [14]. Exposing PLB capabilities to external
CPUs via PCle could unlock significant performance potential but
introduces greater challenges in exception handling. In Albatross,
when a CPU core experiences an exception or packet loss, explicit
notifications to the FPGA are required for reorder resource release.

On previous x86 gateways, we designed several methods to pre-
vent overload from heavy-hitter flows. CloudSentry [27] uses CPU
water level to trigger data-plane sampling, enabling lightweight
heavy-hitter detection and rate limiting, but this process takes
tens of seconds. MIMIC [34] leverages SmartNICs for real-time
heavy-hitter detection in the data plane, significantly reducing
rate-limiting time, but it requires maintaining large concurrent
flow tables. Albatross uses a two-level rate-limiting table on FPGA,
balancing heavy-hitter detection time and memory overhead.
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Conclusion

Albatross is Alibaba Cloud’s 3rd gen gateway in response to the
unexpected cessation of Tofino’s evolution. It is developed using
off-the-shelf x86 CPUs and FPGAs. Specifically, to address the CPU
overload issue, FPGA is used for implementing packet-level load
balancing to CPU cores and a two-level rate limiter. To improve the
gateway’s resource utilization, multiple gateways are deployed as
containers on the same Albatross server.
This work does not raise ethical issues.
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A Basic Pipeline
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Figure A.1: Basic Pipeline

The basic pipeline (BP) handles packet reception and transmis-
sion, parsing, and deparsing, as shown in Fig. A.1. Utilizing SR-IOV,
multiple virtual functions (VFs) are created on a single physical net-
work interface card (NIC) for different GW pods. Albatross employs
VLAN tags to differentiate VFs. Such VLAN tags will be applied
by uplink switches when packets are sent to Albatross. Conse-
quently, the BP’s ingress and egress involve VLAN encapsulation
and decapsulation. Albatross supports both full-packet and header-
payload-split modes. In the ingress path, a pkt_split module di-
vides packets into pkt_header and pkt_payload. For full-packet
mode, the complete packet is reassembled before being sent to
the CPU; in header-payload-split mode, only the pkt_header is
forwarded to the CPU, with the packet being reassembled at the
egress deparser. The header-payload-split mode is advantageous for
large packets, especially Jumbo frames, as it significantly reduces
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PClIe bandwidth pressure between the NIC pipeline and the CPU,
enhancing the throughput of GW pods. The packet mode can be
configured individually by each GW pod.

B Containers
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Figure B.2: Robust GW pod connection design. Switch is the
direct-connect switch of Albatross.

High availability design for gateway containers. Albatross
hosts multiple types of cloud gateways, each supporting a massive
number of tenants and their services. Therefore, the high avail-
ability of GW pods is crucial, ensuring that redundant links can
continue to provide normal service even if some links are damaged.
To achieve this, as shown in Fig. B.1, each container on Albatross
supports using four ports from two NICs within the same NUMA
node for traffic transmission. Our goal is to make these four network
connections fully independent, such that if any NIC or its associ-
ated connection fails, the other connections remain unaffected. To
achieve this high availability goal, we adopted the interconnection
approach shown in Fig B.2(a). This approach ensures that the GW
pod’s four connections are routed through independent link chan-
nels to four different switches, as illustrated in Fig. B.2(b). In this
configuration, a failover in any switch affects only one network
connection of the GW pod. To implement this architecture, we de-
signed two independent pipelines on each NIC, with each pipeline
handling one 100Gbps port.
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