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Abstract—Due to the sharing nature of public cloud, most of
the cloud services use a sharing bandwidth package (sBwp) model
to conduct inbound/outbound communication. The sBwp model
allows users to purchase a sharing bandwidth for plenty of virtual
machines instead of purchasing bandwidth for each virtual
machine separately. The advantage of sBwp is that it can provide
users with convenient configuration and lower economic cost.
However, the sBwp model brings new challenges for operators
to localize the root cause of traffic anomalies of a sharing
bandwidth, especially for a globally distributed large-scale public
cloud with millions of users. In this paper, we first formalize the
sBwp problem on the cloud and propose CloudPin, a root cause
localization framework for this problem. Our framework solves
all the challenges by employing a multi-dimensional algorithm
with three sub-models of prediction deviation, anomaly ampli-
tude, and shape similarity, and an overall ranking algorithm.
Evaluations on real-world data, from one of the world-renowned
public cloud vendors, show that our algorithm precision reaches
97.8% for the top 1 of the ranking list, outperforming multiple
baseline algorithms.

Index Terms—shared bandwidth package, root cause localiza-
tion, traffic anomaly, public cloud

I. INTRODUCTION

With the continuous development of cloud technology, the
public cloud providers provide a wide range of services
for large-scale users, such as cloud computing, storage, and
networking [1]–[3]. According to the latest statistics, the
worldwide cloud market grew 32% to $39.9 billion in the
fourth quarter of 2020 [4]. With the ever-increasing number
of users and services, the operation and maintenance of public
clouds are facing more challenges. One of the most common
services in public cloud networks is sharing of resources to
achieve convenient management and low cost. For example,
one physical machine can be shared by multiple virtual ma-
chines (VMs) [5]. The same network device can be shared by
many services or network functions [6]. For cloud users, the
common sharing of resources service is the shared bandwidth
package (sBwp) service.

sBwp is a user-friendly traffic management service. Specif-
ically, users with a large number of VMs can choose to

*Work done while these authors were interns at Alibaba Group.
†Co-corresponding authors.

use sBwp service to purchase aggregate egress bandwidth
for all VMs, rather than purchasing bandwidth for each VM
individually. This service has several benefits for users. The
first one is the low economic cost. Users can use shared
bandwidth to avoid wasting bandwidth resources when certain
VMs are idle. The second one is the ease of application service
management. With the development of microservice tech-
nology, many application services are now using distributed
microservice architecture [7]. As a result, users often need
multiple VMs to work together to complete an application
service. sBwp service allows users to directly purchase egress
bandwidth for all VMs required for an application service.

However, sBwp services bring new issues to the operation
and maintenance of public clouds. One of the most critical
issues is the problem of locating the root cause of traffic
anomalies. Specifically, when users find anomalies in sBwp
traffic, they want to locate the specific VM(s) in sBwp asso-
ciated with the anomaly. Since most users lack the relevant
operational and maintenance skills, they expect the cloud
provider to provide diagnostic tools.

For public cloud service providers, the root cause localiza-
tion of traffic anomalies in sBwp services requires addressing
the following four challenges.
• Large scale. The number of users using shared bandwidth

package services in the public cloud is vast, with virtual
machines deployed worldwide. Users deploy services
covering a wide range, such as gaming, live streaming,
websites, etc. How to locate the root causes of traffic
anomaly in this large-scale, multi-type application sce-
narios is a core challenge.

• Diversity of traffic anomalies. Due to the different ser-
vice applications deployed by users in the cloud network,
traffic anomalies exhibit diversity, including persistent
and transient occurrences in the time dimension, spikes
and troughs in the amplitude dimension, and high jitter in
the frequency dimension. Therefore, the algorithm needs
to accommodate different types of anomalies.

• Low overhead and real-time. Since cloud service
providers need to provide root cause localization services
to a multitude of users, the localization algorithm is



constrained in computational and storage resources. In
addition, the cloud service provider needs to respond to
user requests as quickly as possible.

• Dynamicity. A large number of users frequently change
the deployment of virtual machines and network devices,
benefiting from the powerful dynamic tuning capabilities
of cloud networks. This requires the algorithm to adapt
to the user’s dynamic adjustments.

Although there are quite a few studies on root cause local-
ization [8]–[11], unfortunately, these works are designed for
specific applications and require training a separate model for
each user, which is not suitable for cloud network scenarios. To
the best of our knowledge, we conduct a comprehensive study
of the root cause localization problem of shared bandwidth
traffic anomalies in public cloud networks for the first time.

In this work, we propose CloudPin, a root cause localization
framework for sBwp service traffic anomalies based on mul-
tidimensional analysis in public cloud networks. Specifically,
we analyze the possible root cause VMs from two perspec-
tives: absolute deviation and relative deviation. The absolute
deviation is obtained by using the traffic time series prediction
algorithm. The relative deviation is obtained from the analysis
of the two dimensions, including anomaly amplitude and
shape similarity. Furthermore, we comprehensively study the
results from three dimensions of prediction deviation, anomaly
amplitude, and shape similarity and propose an integrated
ranking algorithm to obtain a ranking list of possible root cause
VMs.

Our major contributions are summarized as follows:

• To the best of our knowledge, we conduct the first de-
tailed analysis of root cause localization for sBwp service
traffic anomalies in public cloud networks. To address
this problem, we propose a root cause localization frame-
work based on multi-dimensional analysis. Through a
comprehensive analysis of prediction deviation, anomaly
amplitude, and shape similarity, the framework can effec-
tively address the challenge of traffic anomaly diversity
in public cloud networks.

• We try different algorithms in the three dimensions of
prediction deviation, anomaly amplitude, and shape sim-
ilarity. By studying the results of different algorithms, we
choose Moving Average, EVT-based, and set-based sim-
ilarity algorithms, and propose a comprehensive ranking
algorithm to integrate the results of the three dimensions.
The algorithms we choose have the characteristics of low
computational overhead and high real-time performance.
Moreover, the algorithm framework can realize cold start
to meet system dynamicity and storage load requirements.

• The system framework we propose is evaluated with
real data in one of the world-renowned public cloud
vendors. The evaluation results show that the performance
of our proposed framework outperforms a large number
of baseline algorithms.

The rest of this paper is organized as follows: In Section II,
we introduce the background and motivations. In Section III,

we describe the system design. In Section IV, we evaluate the
real data in one of the world-renowned public cloud vendors.
Related work is reviewed in Section V. We conclude the paper
in Section VI.

II. BACKGROUND AND MOTIVATIONS

A. Application scenarios of sBwp in public cloud

There are plenty of application scenarios in the cloud
network using the service of sBwp. We provide three fre-
quently used application scenarios. Fig. 1(a) shows a typical
virtual private cloud network (VPC) constructed by a user in
the cloud network. A typical VPC usually includes several
components, such as egress router (vRouter), virtual switches
(vSwitches), virtual machines (VMs), load balancing (LB),
and database (DB). Cloud users can deploy appropriate VPCs
in the cloud network according to their business applications
to provide external services over the Internet. To realize
convenient management and low cost, users can choose to
deploy sBwp service on vRouter so that all components in
the VPC share sBwp resources. Some large enterprise users
may need to deploy multiple VPCs in different regions, as
shown in Figure 1(b). Cloud providers can provide high-
speed communication services between different VPCs across
regions. The sBwp service can be deployed on this high-
speed channel, allowing components within VPCs in different
regions to share communication bandwidth. Fig. 1(c) shows
a hybrid cloud scenario, where users have both a local data
center and a VPC on the cloud. To ensure the privacy of data,
some enterprise users choose to put computing services on the
cloud, but store the original data in the local data center. The
cloud network can provide dedicated line services for hybrid
cloud scenarios to realize the direct connection between the
VPC on the cloud and the local data center through the virtual
border gateway (vBRouter). For the dedicated line application,
the cloud network can also provide sBwp services deployed
on the vRouter in VPC to adopt all components in the VPC
sharing sBwp resources.

B. Working process of the traffic anomaly localization

The working process of the traffic anomaly localization
is shown in Fig. 2. (A) The user discovers an anomaly in
the sBwp traffic time series on the user’s egress gateway
through visual observation or anomaly threshold warning.
(B) The user reports the anomaly information to the cloud
network operators in the form of a work order. The anomaly
information generally includes region name, user ID, anomaly
start time, duration time, and anomaly metric. Anomaly met-
rics generally include bytes per second (BPS) or packet per
second (PPS). (C) After receiving the work order, the operator
retrieves relevant data from the storage database according to
the anomaly information. Then, the operator starts the anomaly
root cause localization algorithm to analyze the obtained data.
The output of the algorithm is a ranking list where the index
is the VM ID, and the value is related to the root cause
probability. The larger the value in the list, the more likely
the root cause is. (D) The operator selects the results of top k
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Fig. 1. The application scenarios of the sBwp service.
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Fig. 3. An example of motivation.

and feeds them back to the user according to the result given
by the algorithm. (E) The localization work is completed;
the computing resources are released and the data cache is
destroyed.

C. Motivations

Before introducing our motivation, we first show a specific
anomaly example from the real cloud network environment,

as shown in Fig. 3. Fig. 3(a) represents the traffic time series
of the sBwp, and the shaded part is the anomaly time interval.
This is a persistent spike anomaly lasting 40 minutes, which
occurs frequently in cloud networks. Fig. 3(b) and Fig. 3(c)
respectively denote the traffic time series of two VMs using
this sBwp service. It can be seen that VM1 has a similar
anomaly when the sBwp is abnormal. However, VM2 has
no obvious change. Therefore, VM1 is expected to be found
by the localization algorithm, and VM2 is expected to be
excluded.

It can be seen from Fig. 3(a) and Fig. 3(b) that the
anomaly is caused by a serious deviation from the expected
normal value. Therefore, our intuitive idea is to build a traffic
prediction model to determine the presence of anomalies by
calculating the deviation between the prediction time series
and the real time series, which is widely used in anomaly
detection and root cause localization scenarios [12]. Specif-
ically, we first calculate the deviation between the predicted
and real value of the sBwp and VMs traffic time series during
the anomaly time interval. Further, we divide the calculated
deviation of each VM by the deviation of the sBwp to obtain
the deviation ratio of each VM. Finally, we sort the deviation
ratio of each VM. The higher the ranking, the more likely the
root cause is.

However, this intuitive way has two limitations in prac-
tical deployment in large-scale and multi-scenario public
cloud. First, current high-accuracy prediction algorithms
are computation-intensive. Deep learning-based methods can
achieve high prediction accuracy [13], but require a long
offline training process to construct models. However, as the
sBwp problem is user-specific, we cannot train all (millions
of) users’ data offline in advance, which results in an unaf-
fordable computational cost. Second, we prefer cost-effective
prediction algorithms in large-scale system, but they usually
have low-accuracy. Traditional statistic-based methods, such
as Difference [14], Moving Average [15], and Polynomial
Regression [16], are simple and easy to implement, which have
the advantages of fast training. However, since cloud services
have diverse anomaly behaviors, a simple prediction algorithm
is not likely to adapt to various scenarios.

To address the drawback of low accuracy in traditional
statistical learning prediction methods, we add two new dimen-
sions, anomaly amplitude and shape similarity. The prediction
deviation is used to calculate the proportion of the absolute
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deviation of each VM to the sBwp. When there are high-
frequency fluctuations in the traffic time series, it is difficult
for the prediction model to generate accurate results. In this
scenario, we consider reducing the error of the prediction
model by adding the analysis of the anomaly amplitude and the
shape similarity. Specifically, the anomaly amplitude indicates
the change amplitude of a VM traffic during the anomaly time
interval compared to the normal time. When the change is
more pronounced, it means that this VM is more likely to be
the root cause. The shape similarity represents the similarity
between the sequence shape of the VM’s traffic time series and
that of sBwp around the anomaly time interval. The higher the
similarity, the more likely the VM is the root cause. Based on
the calculation of these three dimensions, we further propose
a ranking algorithm, which integrates the three dimensions to
generate the final ranking result of root cause likelihood.

III. SYSTEM DESIGN

A. Overview

sBwp Traffic 
time series

Storage DB cluster
All VMs traffic 

time series

Absolute Deviation

Prediction Algorithm
(Moving Average)

Relative Deviation
Anomaly Amplitude

(EVT-based)

Shape Similarity
(Set-based Similarity)

Ranking Algoritm Ranking VMs List

Data Collection

Algorithm Running

Algorithm Integration

Fig. 4. Structure of localization system.

The structure of CloudPin is shown in Fig. 4. After the
user reports the anomaly information, we first obtain the traffic
data of the sBwp and all VMs using the sBwp service from
the data storage cluster. To train the detection model, the data
we obtain includes the data around the anomaly time interval
and the data in the anomaly time interval. Specifically, we
generally obtain the data 3 days before the anomaly start time
and up to 8 hours after the anomaly end time (since some
sensitive users may report the problem immediately when the
anomaly occurs, the data after the anomaly end time may be
less than 8 hours. In this case, we only use the data before the
anomaly start time for training). After obtaining the traffic
data, we respectively analyze the sBwp traffic time series
and the VMs traffic time series in three dimensions. In the
prediction deviation dimension, we design a model based on

the Moving Average algorithm. In the dimension of anomaly
amplitude, we use an improved model based on the EVT
algorithm [17]. In the dimension of shape similarity, we select
set-based similarity model [18]. After calculating the three
dimensions, we design a ranking algorithm to integrate the
results of the three dimensions and generate the final ranking
list. Next, we explain the design of each model in detail.

B. Prediction model

Before describing the specific model, we first formalize
the problem. Since there are many mathematical symbols
in this paper, we summarize the meaning of the symbols
in Table I. We define the traffic time series of a sBwp
as y(t), and the set of traffic time series of the VMs is
X = {x1(t), x2(t), ..., xn(t)}, where x(t) represents the traffic
time series of a VM, n represents the number of VMs.
Since all x(t) in X together produce the sBwp traffic y(t),
y(t) = x1(t)+x2(t)+ ...+xn(t). We define the anomaly time
interval as (ts, te), where ts is the start time of the anomaly
and te is the end time. The goal of the localization algorithm
is to find a subset of X that is the anomaly root cause of y(t)
in (ts, te).

TABLE I
THE MEANING OF THE MATHEMATICAL SYMBOLS.

Meaning Symbol Meaning Symbol Meaning Symbol
sBwp time se-
ries y(t)

VM time se-
ries set X

VM time se-
ries x(t)

Anomaly start
time ts

Anomaly end
time te

Prediction
Model H

Absolute de-
viation at one
time point

df
Total absolute
deviation dsumf

Ratio of the
cumulative
absolute
deviation

dpf

Threshold
of EVT
algorithm

θ
Anomaly am-
plitude at one
time point

α
Anomaly
amplitude of
time series

αmax

Shape
similarity
of the y(t)
and x(t)

S(y, x)
Discretization
set of time
series

Z
Final result of
integrated al-
gorithm

In

To quantify the anomalies generated by y(t) and X in
the (ts, te), we first use a prediction model to calculate
the absolute deviation. Specifically, for the y(t), we use a
prediction model H , and H(y(tc)) represents the predicted
value of y(t) at time tc. We define the absolute deviation of
y(t) at tc as df (y(tc)) = |y(tc)−H(y(tc))|. For the absolute
deviation of the (ts, te) interval, we use the cumulative sum
method to sum the df in the (ts, ts) to obtain the total
absolute deviation of y(t) in the (ts, te) as dsumf (y(t)) =
df (y(ts))+df (y(ts+1))+...+df (y(te)). Similarly, we calcu-
late the cumulative absolute deviation in (ts, te) for each x(t)
in the set X as dsumf (x1(t)), dsumf (x2(t)), . . . , dsumf (xn(t)).
Furthermore, we obtain the ratio of the cumulative absolute
deviation of each VM to the sBwp as dpf (x(t)) =

dsumf (x(t))

dsumf (y(t)) ,
where dpf (x(t)) ∈ [0, 1] (Since y(t) is the sum of all x(t),
generally dpf (x(t)) ≤ 1. However, it is also possible that due
to the uncertainty of the prediction model, dpf (x(t)) may be
slightly greater than 1. Our algorithm does not strictly require
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Fig. 5. A false positive example of prediction model.

that dpf (x(t)) must be less than 1, hence this special case
will not affect the accuracy of the algorithm). Finally, we
sort the absolute deviation percentage of each VM dpf (x(t)) in
descending order. The higher the value of dpf (x(t)), the more
likely it is the root cause.

Next, we introduce the choice of prediction model H . As
described in Section II, prediction models based on deep learn-
ing are not suitable for large-scale and complex scenarios in
public cloud networks. Therefore, we choose to use statistical
learning methods. We compare several algorithms and select
the Moving Average algorithm with the best performance in all
prediction models, the detail results shown in Section IV-B.
We analyze this because when the anomaly occurs, the ab-
normal data points have significant differences compared with
the surrounding normal data points. Therefore, the Moving
Average algorithm can fit the surrounding normal data well
to show the difference between the abnormal points and the
normal points. Specifically, we maintain a sliding window of
length m and calculate the average value of all points in the
sliding window as the predicted value of ts. Next, we move
the sliding window M to obtain the predicted value at each
moment in (ts, te) and the accumulated deviation. In practice,
we compare different sliding window lengths and find that
m = 60 minutes is an optimal parameter.

C. Anomaly amplitude

In most cases, the prediction model can quantify the abso-
lute deviation of the traffic time series very well. However,
in the scenario of high-frequency jitter traffic time series, it is
difficult for the prediction model to generate effective absolute
deviations directly. For example, Fig. 5 shows a false positive
example of the prediction model. As can be seen from Fig.
5(a), the shaded part indicates an obvious transient spike in
the sBwp traffic time series. Fig. 5(b) shows the traffic time
series of the VM with the largest absolute deviation given by
the prediction model. However, it is a false positive, and the
absolute deviation ratio is 0.025. Fig. 5(c) shows one of the
actual root cause VMs. The absolute deviation ratio of Fig.
5(c) calculated by the prediction model is 0.014. Therefore,
it can be seen that for the high-frequency jitter traffic time
series, similar to that in Fig. 5(b), it is challenging to generate
correct results using only the prediction model.

To address this problem, we add the dimension of the
anomaly amplitude in the relative deviation. The absolute
deviation generated by the prediction model mainly considers
the deviation ratio of each VM to the sBwp traffic time
series within the anomaly time interval. Unlike the absolute
deviation, the anomaly amplitude considers the anomaly sig-
nificance of each VM’s traffic time series at the anomaly time
compared with its own normal time. For example, the anomaly
amplitude of the traffic time series in Fig. 5(b) is relatively
low because it does not significantly change at the anomaly
time interval compared with the surroundings. On the contrary,
the anomaly amplitude in Fig. 5(c) is higher since there is a
abrupt increase at the anomaly time interval compared with
the surroundings.

To quantify anomaly amplitude, we compare two different
algorithms. One is the non-parametric estimation method
based on KDE [19], and the other is the EVT algorithm based
on extreme value theory [17]. We choose the EVT algorithm
based on extreme value theory since it has better performance
(detailed experimental results are discussed in Section IV-B).
Next, we briefly introduce the EVT algorithm, and a detailed
description refers to [17]. EVT is an effective peak detection
algorithm since it infers the extreme value distribution in the
data, rather than making strong assumptions on the original
data.

Given a random variable W , and its cumulative probability
density function F (w) = P (W ≤ w). We define F (w) =
1 − F (w) = P (w > W ), which means the ‘tail’ of the data
distribution. According to existing work, Tippett [20] and later
Gnedenko [21], F (w) generally has the following form:

Gγ : w 7→ exp(−(1 + γw)
− 1
γ )), γ ∈ R, 1 + γw > 0.

γ is the extreme value index that depends on the original law.
Because we lack assumptions about the initial distribution, γ
is difficult to choose directly. To effectively solve this problem,
Pickands-Balkema-De Haan theorem [22], [23] is proposed as
follows:

Theorem 1 (Pickands-Balkema-De Haan): The cumulative
distribution function F ∈ Dγ if and only if a function σ exists,
for all w ∈ R s.t. 1 + γw > 0:

F t(w) = P (W − t > w | W > t) v
t→τ

(1 +
γw

σ(t)
)
− 1
γ

This result shows that the excess over a threshold t, written
W − t, are likely to follow a Generalized Pareto Distribution
(GPD) with parameters γ, σ. And t is a initial ‘high’ threshold.
Based on domain experience and [17], we set t to a high
empirical percentile (say 98%). And then like the method in
[17], we use the method of Maximum Likelihood Estimation to
estimate the σ and γ. The output of the EVT algorithm is the
anomaly threshold. Anomalies in the cloud network include
spike and trough, therefore we use a double-direction EVT
algorithm, that means EVT algorithm outputting a maximum
anomaly threshold θh, and a minimum threshold θl. Further,
we define the anomaly amplitudes of the traffic time series
x(t) at time tc as αh(tc) and αl(tc):
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αh(tc) =


x(tc)− θh
x(tc)

, if x(tc) > θh,

0, if x(tc) ≤ θh.

αl(tc) =


θl − x(tc)

θl
, if x(tc) < θl,

0, if x(tc) ≥ θl.

αh(tc) and αl(tc) respectively represent the spike and
trough anomaly amplitude of the traffic time series x(t) at
time tc. Since the anomaly time lasts from ts to te, we define
the anomaly amplitudes in the time range (ts, te) as:

αmaxh = max(αh(t)), for all t in (ts, te)

αmaxl = max(αl(t)), for all t in (ts, te)

αmaxh and αmaxl respectively represent the spike and the
trough anomaly amplitude of the traffic time series in the
time interval (ts, te). And, αmaxh , αmaxl ∈ [0, 1], the closer
to 1, the more apparent anomaly. For example, αmaxh of the
traffic time series in Fig. 5(b) is 0, but αmaxh in Fig. 5(c) is
0.85. Therefore, it can be seen that the anomaly amplitude
can be used to effectively detect the anomaly in Fig. 5(c). We
introduce in detail how the anomaly amplitude is integrated
with the prediction model in Section III-C.

D. Shape similarity

Besides the anomaly amplitude, from the perspective of
relative deviation, we also need to consider the shape similarity
between VM and sBwp traffic sequence in the anomaly
time interval to solve the challenge of cloud network traffic
complexity. For example, the traffic time series in Fig. 3(a) and
Fig. 3(b) have similar shapes in the anomaly time interval.

At present, there are many research works related to se-
quence shape similarity. The method based on distance is
prevalent, such as DTW algorithm [24]. Although the DTW
calculation method has a high accuracy, its high computational
complexity is not suitable for a large-scale cloud network
environment. Since we only need to analyze root cause and
do not have very high accuracy requirements for similarity, we
choose a set-based similarity method, which has a good trade-
off between accuracy and efficiency, and is one of the state-of-
art method [18]. We briefly describe the set-based similarity
method, and details refer to [18]. The core idea based on the
set similarity algorithm is to convert the continuous time series
similarity problem to the discrete set similarity problem. The
specific calculation process is as follows:

Given the sBwp traffic time series y(t), the traffic time series
of a VM x(t), and the anomaly time interval (ts, te). The
goal of similarity algorithm is to calculate the shape similarity
S(y, x) between y(t) and x(t) around the interval (ts, te).

First, since y(t) and x(t) may have difference in magnitude
of the values, we normalize y(t) and x(t) by commonly
used approach z-normalization [25]. To reflect the difference
between the data during the anomaly time and the surround-
ing normal time, we extend the normalization time interval

Fig. 6. A example of grid division.

with a ∆t time interval around the anomaly time interval,
(ts − ∆t, te + ∆t). According to operating experience, we
choose ∆t as 1 hour. The specific calculations are as follows:

Norm(y(t)) =
y(t)−mean(y(t))

std(y(t))

Norm(x(t)) =
x(t)−mean(x(t))

std(x(t))

Mean and std respectively represent the mean and standard
deviation of the traffic time series in (ts−∆t, te+ ∆t). Next,
we introduce the process of time series discretization. First,
we cut the coordinate plane into k ∗ l cells, as shown in
Fig. 6. k represents the number of grids on the horizontal
axis, and l represents the number of grids on the vertical
axis. For example, k = 3, l = 2 in Fig. 6. Further, we
sequentially number the cells as shown in Fig. 6. We define
the set of cell numbers that each sequence passes through
as the discretization representation Z of the sequence. For
example, the discretization set of y(t) in Fig. 6 is represented
as Z(y(t)) = {3, 4, 5, 6} and the discretization set of x(t)
is represented as Z(x(t)) = {2, 3, 4, 5}. After discretization
representation, we use jaccard metric to calculate the similarity
of discretization sets [26], shown as follows:

Jaccard(Z(y(t)), Z(x(t))) =
|Z(y(t)) ∩ Z(x(t))|
|Z(y(t)) ∪ Z(x(t))|

This method can effectively calculate the shape similarity
between the VM and sBwp traffic time series. For example,
the shape similarity of the time series in Fig. 3(a) and Fig.
3(b) is 0.90. However, the shape similarity of Fig. 3(a) and
Fig. 3(c) is only 0.15.

E. Ranking algorithm

When the calculation of the above three dimensions is
completed, we need to integrate the results of the three
dimensions. The commonly used integration algorithm is a
simple weighted average [27]. But this method is not suitable
for our problem since the deviation perspectives described
by the three dimensions are different. Therefore, we need
to design a reasonable integration algorithm. The prediction
model describes the absolute deviation, which is the basis
of root cause analysis. The anomaly amplitude and shape
similarity characterize the relative deviation, which is a further
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description on the basis of the absolute deviation. Therefore,
the integration algorithm we designed is as follows:

In(x(t)) = dpf (x(t)) ∗ (ωα ∗ αmax(x(t)) + ωs ∗ S(x(t)))

In(x(t)) represents the final result of VM traffic time series
x(t) after the integration. dpf , α

max, S respectively represent
the result of the prediction model, anomaly amplitude, and
shape similarity of x(t). ωα and ωs respectively represent the
weights of anomaly amplitude and shape similarity. Through
this integration algorithm, it ensures that on the basis of
absolute deviation, the analysis of relative deviation can be
effectively reflected.

Next, we discuss the calculation method of the anomaly
amplitude αmax. In Section III-E, we calculate the anomaly
amplitudes of spike and trough separately. Therefore, in the
integration algorithm, there are different considerations for the
calculation of αmax. In practice, we first calculate the anomaly
amplitudes of the spike and trough of the sBwp traffic time
series y(t). If αmaxh (y(t)) > 0, αmaxl (y(t)) = 0, which means
that this is a spike anomaly. Therefore, we only calculate αmaxh

of VM as anomaly amplitude. On the contrary, if the anomaly
amplitude of the sBwp is αmaxh (y(t)) = 0, αmaxl (y(t)) > 0;
we only calculate the αmaxl of the VM. When the anomaly
amplitude of sBwp is αmaxh (y(t)) > 0, αmaxl (y(t)) > 0, this
indicates that the sBwp may have a jitter anomaly. Therefore,
we calculate the αmaxh and αmaxl of the VM separately,
and then αmax = (αmaxh + αmaxl )/2. The last special case
is αmaxh (y(t)) = 0, αmaxl (y(t)) = 0 for sBwp. This case
indicates that the sBwp does not produce a significant increase
or decrease. Therefore, the anomaly amplitude cannot generate
effective results in this case. We set αmax = 0 for all VMs,
which means that the effect of anomaly amplitude is ignored.

Finally, we discuss the choice of weights ωα and ωs. ωα
and ωs respectively represent the weight of anomaly amplitude
and shape similarity in root cause analysis. The weight setting
strategy is different for different users due to different business
applications. Therefore, users can choose appropriate weights
according to their applications. We set ωα = ωs = 0.5 by
default, which means anomaly amplitude and shape similarity
have the same importance. We further discuss the impact of
weight settings on algorithm performance in Section IV-E.

IV. EVALUATION

A. Setup

In our evaluation, we select 3 data centers from a world-
renowned cloud network vendor. Through the observation of
the operator and the work orders reported by users, we find a
total of 183 anomaly cases in these three data centers, from
2020-11-30 to 2021-04-01, about four months. The details of
the data are shown in Table II. Taking data center A as an
example, we explain the meaning of the data in the table. We
find 77 anomaly sBwp cases in data center A. The total number
of machines using these bandwidth packages is 24,549. Since
the number of machines in each sBwp is different, we count
the distribution of the number of machines in sBwp. Among
the 77 anomaly cases in data center A, 76 sBwp services

have more than ten machines; 8 sBwp services have more
than 1,000 machines, and the largest one has 2,483 machines.
We collect traffic time series of these sBwp and VMs in three
data centers from the centralized data storage center on an
analysis server. In the annotation of datasets, it is not feasible
to mark all VMs manually. Therefore, we adopt a method
similar to [9]. We consider the union of root causes detected
by all baseline algorithms as candidate root cause sets, and
then verify them manually by experienced experts one by
one. Using this method to evaluate the algorithm can obtain
accurate precision, but the recall may be biased (because the
root cause may be missed by all the above methods), hence we
only choose precision as the evaluation metric when evaluating
the algorithm performance.

Since the output of our algorithm is a ranking list, we
choose precision@top k as the evaluation metric. According
to the processing experience of the operation, we choose the
maximum value of k as 5, which means that we prioritize the
investigation of the first five possible root causes generated by
the algorithm.

TABLE II
DETAILS OF THE DATA.

Region #cases #machines virtual machines distribution
>
10

>
50

>
100

>
500

>
1000

>
10000

A 77 24549 76 54 25 8 8 0
B 49 50815 47 41 23 11 10 1
C 57 9287 57 53 25 2 1 0

B. Overall evaluation

First, we evaluate the overall performance of the algorithm.
Our algorithm uses three-dimensional analysis and an inte-
grated model. Therefore, our baseline algorithm includes four
aspects: the simple model of prediction deviation, anomaly
amplitude, shape similarity, and the multi-dimensional inte-
grated model. We select the parameters of baseline models
that perform best in our cases through plenty of attempts.

Baseline prediction models include Linear Regression [28],
Olympic (native seasonal model), Simple Exponential Smooth-
ing [16] , Polynomial, Difference [14], Moving Median and
Moving Average.

We choose two anomaly amplitude baseline models, as
described in Section III-C, one is the EVT-based algorithm we
use, and the other is the non-parametric estimation algorithm
based on KDE [19]. The KDE algorithm infers the probability
density distribution function of the original sequence through
non-parametric estimation of the traffic sequence. Then we
obtain the anomaly probability as the anomaly magnitude
through the p-value method.

The shape similarity baseline models include the set-based
similarity algorithm we use and the spearman correlation
coefficient method [29].

The integrated models include simple Top algorithm and
EGADS algorithm [30]. The Top algorithm is a traditional
method used by operators, representing a simple ranking based
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TABLE III
OVERALL PERFORMANCE EVALUATIONS.

Type Algorithm name Precision@1 Precision@2 Precision@3 Precision@4 Precision@5 Average precision

Prediction
Model

Linear Regression 0.587 0.570 0.579 0.579 0.589 0.581
Olympic 0.847 0.847 0.839 0.837 0.833 0.841

Polynomial 0.579 0.552 0.560 0.563 0.559 0.563
Difference 0.885 0.869 0.852 0.839 0.834 0.856

Moving Median 0.568 0.568 0.564 0.565 0.570 0.567
Moving Average 0.891 0.869 0.856 0.846 0.844 0.861

Simple Exponential Smoothing 0.770 0.779 0.779 0.776 0.774 0.776

Anomaly
Amplitude

KDE 0.508 0.481 0.484 0.483 0.473 0.486
EVT 0.656 0.653 0.650 0.651 0.648 0.652

Shape
Similarity

Set-based 0.689 0.667 0.656 0.646 0.637 0.659
Spearman 0.650 0.626 0.612 0.599 0.598 0.617

Integrated
Model

Top 0.776 0.743 0.741 0.749 0.746 0.751
EGADS 0.825 0.795 0.784 0.780 0.779 0.793

CloudPin 0.978 0.918 0.902 0.893 0.884 0.915

on traffic statistics. The EGADS algorithm is an anomaly de-
tection algorithm proposed by yahoo [30]. EGADS algorithm
tries to solve the problem that a single prediction model is
challenging to provide accurate predictions. It uses the results
of multiple prediction models to compare in the training data
set, and select the model with the lowest prediction deviation
as the detection model.

The performance evaluation results of the above algorithm
are shown in Table III. First, it can be seen from the overall
algorithm performance comparison that CloudPin achieves the
best performance under different k. Especially when k=1,
which is the most likely root cause, CloudPin can reach
precision of 97.8%, far exceeding other baseline algorithms.
In actual operation, the root cause of ranking number one
is often the most concerned by users, and this is the high-
est priority for users to analyze application issues. Then,
compared with the anomaly amplitude and shape similarity
algorithm, the prediction model algorithms have relatively
better performance. For example, the average precision of
Olympic, Difference, and Moving average can reach more
than 80%. The average precision of the anomaly amplitude
and shape similarity algorithm are below 70%. This shows
that the absolute deviation produced by the prediction model
is the basis of root cause analysis, while the relative deviation
mainly plays a role in auxiliary analysis. This also verifies
the rationality of our ranking algorithm model. In addition,
the moving average algorithm, the EVT algorithm and the
Set-based similarity algorithm achieve the best performance
in their respective dimensions, which validates the basis for
our model selection.

For the integrated model, it can be seen that the traditional
Top algorithm is obviously inferior. This is because the Top
algorithm cannot solve some cases with high changes or de-
clines. Although the EGADS algorithm integrates a variety of
prediction models, EGADS is not as good as Moving Average.
This shows that it is difficult to locating root cause only
through the optimization of prediction models. We speculate
that this may be due to the fact that EGADS adopts different

algorithms and selects the best model on the training data
set. It is difficult to ensure that the selected prediction model
is still optimal in the anomaly time interval. Therefore, the
overall performance of EGADS is not significantly improved
compared to the single model.

C. Data center evaluation

To verify the robustness of the algorithms in different data
centers, we respectively evaluate the data in the three data
centers from different regions, and the results are shown in Fig.
7. We can see that our algorithm outperforms other baseline
algorithms in different data centers. Although all algorithms
in data center C have better performance due to the obvious
anomalies in data center C. The overall performance of dif-
ferent algorithms in different data centers is close. Therefore,
the location of data centers has no significant impact on the
performance of the algorithm. We analyze that this is mainly
because users and applications in different data centers are
vast. There are many overlaps between different data centers.

D. Anomaly type evaluation

As mentioned in the introduction, the diversity of anomaly
types is a core challenge in cloud networks. By observing the
sBwp data in cloud networks, the common types of anomaly
cases can be divided into five parts, including persistent spike,
transient spike, persistent trough, transient trough, and others,
some of examples as shown in Fig. 8. According to operation
experience, we commonly define an anomaly exceeding 30
minutes as a persistent anomaly. Conversely, an anomaly,
duration time less than 30 minutes, is defined as the transient
anomaly. Others refer to anomalies that are not within the
scope of spike or trough and commonly refer to some high-
frequency jitter anomalies. Through the above definition, we
manually label the anomaly types of all cases.

To verify the generality of the algorithms for different
anomaly types, we evaluate the different types of anomaly
cases, as shown in Fig. 9. First, it can be seen that in
different types of cases, the performance of CloudPin exceeds
other baseline algorithms. For anomalies other than Others,
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Fig. 7. Performance of different regions.
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Fig. 8. Examples of different anomaly classification.
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Fig. 9. Performance evaluations of different anomaly types.

we can see that the traditional Top algorithm has relatively
good performance in spike scenarios and poor performance in
trough scenarios. This is consistent with what we described
in the Section IV-B that the Top algorithm could not solve
the trough scenario. The Moving Average algorithm based
on prediction deviation has good performance in transient
spike and trough but not effective in persistent anomalies.
This is mainly because the prediction model has a cumulative
effect on long-term prediction errors. The EVT-based anomaly
amplitude algorithm has better results in transient anomalies
than persistent anomalies, which is similar to the prediction
model. This is mainly because as the time interval becomes
longer, the number of interferential points may increase,
leading to the EVT algorithm generating errors. The set-based
shape similarity model performs better in persistent anomalies
compared with transient anomalies. This is because the longer
the anomaly duration time, the more obvious the sequence
shape becomes. Due to the limited sample number of Others,
it is difficult to give a statistically significant result. From the
existing 4 cases, it can be seen that the average precision of

TABLE IV
PERFORMANCE OF DIFFERENT WEIGHTS.

ωα ωs P@1 P@2 P@3 P@4 P@5 Ave
0.0 1.0 0.951 0.902 0.880 0.871 0.861 0.893
1.0 0.0 0.962 0.910 0.898 0.890 0.878 0.907
0.5 0.5 0.978 0.918 0.902 0.893 0.884 0.915

TABLE V
CONSUMPTION TIME EVALUATION.

#VM #cores Algorithm name Time Speed

1994
1

Moving Average 223s 8.9 vm/s
EVT 294s 6.8 vm/s

Set-based 175s 11.4 vm/s
EGADS 11263s 0.2 vm/s

CloudPin 695s 2.9 vm/s
16 CloudPin 49s 40.7 vm/s

CloudPin still has a slight improvement compared with other
algorithms.
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E. Ranking weight discussion

The integration algorithm we designed needs to set the
weight of anomaly amplitude and shape similarity. Although
the above evaluation experiments show that our default settings
(ωα = 0.5, ωs = 0.5) can achieve effective results. We further
discuss the influence of the weight setting on the performance
of the algorithm, and the evaluation results are shown in
Table IV. (ωα = 0.0, ωs = 1.0) means that the algorithm
only calculates the relative deviation caused by the shape
similarity, and (ωα = 1.0, ωs = 0.0) means that the algorithm
only considers the relative deviation caused by the anomaly
amplitude. We can see that when only the relative deviation
of shape similarity or anomaly amplitude is considered, the
performance of the algorithm is not as good as the default
configuration. This shows that the anomaly amplitude and
shape similarity are both meaningful in the algorithm. For spe-
cific cases, users can adjust the weight settings appropriately
according to their application and anomaly types. For example,
for persistent anomalies, the weight of the shape similarity ωs
can be appropriately increased, while for transient anomalies,
the weight of the anomaly amplitude ωα can be appropriately
increased.

F. Overhead evaluation

The overhead evaluation of the algorithm includes storage
space and calculation time. Because the algorithm only uses
simple metrics, such as PPS, BPS, etc., and the training data
only needs about three days, the average storage space of each
traffic time series does not exceed 200KB. Taking the largest
case of our collected data as an example, the storage overhead
used by the user with 33,601 VMs is about 200KB∗33, 601 ≈
7GB. This storage overhead is several orders of magnitude
lower than that of flow analysis methods such as Netflow [31].
Therefore, the storage overhead of our algorithm is almost
negligible.

We evaluate the calculation time of a case with 1994
VMs on an ordinary server (CPU: 16 cores, Memory: 128GB
DDR4). The evaluation results are shown in Table V. We can
see that in the case of a single core, the calculation time of the
three dimensions alone is between 150-300s, and there is no
obvious difference in orders of magnitude. This shows that our
three-dimensional calculation method is appropriate in terms
of computing time avoiding the situation of one sub-model
waiting another for a long time. In addition, our integrated
algorithm is significantly faster than the EGADS algorithm.
This is mainly because EGADS uses a large number of
prediction models, and we only use a single prediction model.
We solve the problem of inaccuracy of a single prediction
model by adding two relative deviation dimensions to make the
number of models controllable. In addition, because CloudPin
can perform parallel calculations, consumption time can be
reduced to 49 seconds when all 16 CPU cores are used.
According to our practical experience, manual fault location
often takes several hours due to excessive disposal processes.
Therefore, the consumption time of CloudPin is acceptable in
the operation and maintenance of cloud networks.

V. RELATED WORK

Specific-application root cause analysis. Although there
are many previous works on root cause localization. Most of
these works are designed for a specific application software
system. Some works [8], [32]–[36] rely on the dependency
topology of the service. For example, MicroRCA [8] needs to
construct an attributed graph with services and hosts to model
the anomaly propagation among services. However, the cloud
provider cannot directly obtain the user’s application topology
information in a cloud network. Except for using topology,
TraceAnomaly uses microservice invocation traces to detect
anomalies [9]. MEPFL tries to locate microservice failures
by learning system trace logs [37]. However, cloud network
providers are unable to obtain these specific application op-
erating data subject to user privacy. In addition, Fluxrank
constructs a framework to localize the root cause machines by
using machine-level indicators, including the network metric
used by us [10]. However, this method requires building a
separate model for each user in the cloud network. Hence this
high overhead is unacceptable for the cloud network operator.

Time series anomaly detection algorithm. Commonly,
time series anomaly detection algorithms include density-
based, clustering-based, prediction-based, and so on [12].
Since the prediction-based model can quantify the anomaly,
we adopt the prediction-based method. Prediction models in-
clude traditional statistical learning methods and deep learning
methods. The statistical methods have been discussed in detail
as baseline algorithms. We provide the works of prediction
model based on deep learning. LSTM is the most commonly
used neural network model for time series prediction and
anomaly detection [13], [38]–[40]. Although the LSTM-based
methods have high accuracy, they need to train an offline
model separately for each user, which is high overhead and
inflexible against the requirements of the cloud network.

VI. CONCLUSION

In this paper, we propose CloudPin, a framework based
on multi-dimensional analysis to locate root cause of sBwp
traffic anomalies in public cloud networks. Our algorithm
analyzes the three dimensions of prediction deviation, anomaly
amplitude, and shape similarity and generates possible root
lists through an integrated ranking algorithm. We conduct a
comprehensive evaluation in a real large-scale cloud network.
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