
A Two-stage Heavy Hitter Detection System Based
on CPU Spikes at Cloud-Scale Gateways

Jianyuan Lu∗, Tian Pan†, Shan He∗, Mao Miao∗, Guangzhe Zhou∗, Yining Qi‡, Biao Lyu∗, Shunmin Zhu∗
∗Alibaba Group

†State Key Laboratory of Networking and Switching Technology, BUPT, Beijing, China
‡State Key Laboratory of Industrial Control Technology, Zhejiang University, China

Abstract—The cloud network provides sharing resources for
tens of thousands of tenants to achieve economics of scale.
However, heavy hitters engendered by a single tenant will
probably interfere with the processing of the cloud gateways,
undermining the predictable performance expected by other
cloud tenants. To prevent it, heavy hitter detection becomes a
key concern at the performance-critical cloud gateways but faces
the dilemma between fine granularity and low overhead. In this
work, we present CloudSentry, a scalable two-stage heavy hitter
detection system dedicated to multi-tenant cloud gateways against
such a dilemma. CloudSentry contains a lightweight coarse-
grained detection running continuously to localize infrequent
CPU spikes. Then it invokes a fine-grained detection to precisely
dump and analyze the potential heavy-hitter packets at the CPU
spikes. After that, a more comprehensive analysis is conducted
to associate heavy hitters with the cloud service scenarios and
invoke a corresponding backpressure procedure. CloudSentry
significantly reduces computation, memory and storage overhead
compared with existing approaches. Additionally, it has been
deployed world-wide in Alibaba Cloud for over eleven months,
with rich deployment experiences. In a gateway cluster under an
average traffic throughput of 251Gbps, CloudSentry consumes
only a fraction of 2%-5% CPU utilization with 8KB run-time
memory, producing only 10MB heavy hitter logs during one
month.

I. INTRODUCTION

Today’s cloud service vendors [1]–[3] provide a wide range
of public cloud services across the world, such as computing
cloud service, storage cloud service and network cloud ser-
vice. Based on the diverse cloud services, cloud users (aka,
tenants) can flexibly and cost-effectively deploy and customize
their own applications, focusing more on the business logic,
without worrying too much about the underlying infrastructure
management. One of the most significant features of the cloud
service is the sharing of resources to achieve economies of
scale, which can further be classified into different sharing
models. For example, one network device can be shared
by multiple tenants, usually through oversubscribing Virtual
Machines (VMs) based on a hypervisor [4]. The same network
device can also be shared by many services or network
functions [5]. At a closer look, one network device can
also be shared by massive concurrent flows, generated from
multiple services launched by tenants [6]. Generally, tenants
customize their own applications in the cloud through cloud
service gateways [7]. Under the varying sharing models,
contention between different tenants, services or flows will
arise at the gateways if there is no guaranteed resource

isolation mechanism. According to our experience of cloud
gateway management, the traffic bursts or heavy-hitter flows
are triggered by a few tenants in most cases. It will probably
affect the forwarding performance of other tenants, since even
a single tenant’s traffic bursts may starve gateway’s network
resource while the strict resource isolation at the network level
has not been readily deployed [4]. Therefore, for public clouds,
the detection of heavy hitters and the appropriate response
measures to the detected heavy hitters are critical to the stable
performance of cloud services.

For public cloud services, heavy hitter detection needs to
address the following three challenges.

• Low overhead. The performance overhead of heavy hitter
detection reflects in three aspects: computation, mem-
ory and storage. First, lots of heavy hitter detection
approaches are conducted on the data plane [8]–[12] for
rapid traffic anomaly detection. Such a detection should
be designed as lightweight as possible to avoid interfering
with the normal traffic forwarding. Second, modern Data
Center(DC) switches generally equip with very com-
pact memory (SRAM and TCAM) to accommodate fast
forwarding tables [5]. The size of data structures for
heavy hitter detection should be constrained to fit in the
limited remaining memory. Last but not least, storage is
also an important metric once overlooked. A real cloud
infrastructure needs to preserve system logs about the
detected heavy hitters for a long time (e.g., 30 days) for
retrieval and analysis of historical problems. Therefore,
heavy hitter storage should better be succinct enough to
save operation and maintenance expenses.

• Both incast and elephant-flow detection. Incast [13] is
an aggregation of multiple concurrent mice flows which
together pose great traffic processing pressure to the
system. While an elephant flow is a single flow with
persistent traffic burst. In cloud gateways, we find both
traffic patterns of heavy hitters prevail and cause severe
damages to the predictable performance of cloud tenants.

• World-wide scalability and deployability. Since cloud
infrastructures for public cloud services are built globally
with a great many data centers distributed at regions
and zones, heavy hitter detection approaches should have
horizontal scalability and rapid deployability.

Although extensive research has been conducted for heavy

hitter detection, few existing approaches achieve low over-
head at computation, memory and storage simultaneously. For
example, NetFlow [14], sFlow [15] have low computation
overhead but at the cost of considerable memory consumption.
Sketch-based approaches [10]–[12], [16], [17] are memory-
efficient with succinct probabilistic data structures but it is hard
to enumerate or perform statistics about the heavy hitters since
the flow identifiers are not explicitly preserved. Approaches
like Flowradar [18] dump the detected heavy hitters every
10ms, engendering enormous storage overhead for the log
system of globally distributed cloud environment. Besides,
existing approaches are designed to detect heavy hitters caused
either by incast [13], [19] or by elephant flows [8], [20]
and very few approaches can detect both at the same time.
For scalability and deployability, most approaches focus on
single-point heavy hitter detection. A few approaches claim
to conduct network-wide detection [21], [22] but still are
evaluated inside a small local network. Heavy hitter detec-
tion research at cloud-scale environment dealing with high-
throughput production traffic is still a missing piece.

At cloud scale, conducting heavy hitter detection at pro-
duction traffic continuously in 7*24 hours (24 hours a day, 7
days a week) need massive amount of computation, memory
and storage resources. Our measurement of cloud gateway
traffic indicates that for most of the time, the traffic is steady
with minor packet drops, thanks to the horizontal expansion
of the processing capacity in the cloud. That is to say, fine-
grained detection at production traffic for all the time wastes
a large amount resources, which however, is done by most
state-of-the-art approaches. Some sampling-based detection
approaches [14], [15] can reduce the performance overhead
to some extent, but cannot precisely localize the heavy hitters.

In this work, we propose CloudSentry, a two-stage heavy
hitter detection system based on CPU spikes for cloud-
scale multi-tenant gateways. Unlike the existing approaches
detecting heavy hitters in 7*24 hours, CloudSentry follows a
two-stage heavy hitter detection architecture that contains a
lightweight coarse-grained detection plus an event-based fine-
grained detection. The coarse-grained detection monitors CPU
utilization as the indicator for 7*24 hours, which faithfully
reflects the traffic load changes on the gateways in real time.
Once CPU utilization spikes persist for some time, the fine-
grained heavy hitter detection will be triggered to dump the
packets and then conduct further analysis. Currently, Cloud-
Sentry is implemented and deployed at software cloud gateway
clusters. We believe, the event-based heavy hitter detection
paradigm can also be extended to hardware-based systems.

Our major contributions are summarized as follows:
• We propose CloudSentry, a two-stage heavy hitter de-

tection approaches based on CPU spikes for cloud-
scale multi-tenant gateways. Such an event-triggered, on-
demand monitoring system is lightweight and accurate
enough to be deployed in globally distributed cloud
environment. Under the meticulous guard of CloudSentry
at the cloud gateways, predictable performance of cloud
tenants becomes more tractable than ever.

• Different from the previous works that focus on finding
out heavy hitters under a single definition of either incast
or elephant flows, CloudSentry is versatilely designed to
detect both incast and elephant flows at the same time.

• With extensive real cloud traffic measurement, we dis-
cover the “dominant-tenant effect” that most of the simul-
taneous heavy hitters are correlated and generated by one
dominant tenant. That is to say, such a dominant tenant
will probably invoke several elephant flows or thousands
of mice flows (the incast case) in a very short time.
Accordingly, CloudSentry leverages such observations for
rapid heavy hitter filtering.

• CloudSentry has been steadily working in Alibaba Cloud
for over eleven months, from which the rich experiences
are learned and shared in the paper.

II. BACKGROUND AND MOTIVATIONS

A. Cloud Service Gateways

Multi-tenant cloud service gateways. Virtual cloud net-
work services offer opportunities for users to customize their
own private networks in the cloud through multi-tenant cloud
gateways [7]. Scaling with growing cloud traffic, these gate-
ways need to handle millions of internal tunnels, providing
functions like forwarding, encapsulation/decapsulation, Qual-
ity of Service (QoS) provisioning and security protection [6],
[23]. Since a cloud gateway is generally shared by multiple
tenants with massive concurrent flows, sudden arrival and
persistence of abnormal heavy-hitter flows will potentially
drain the available CPU and memory resources of the gateway,
leading to starvation of other processing tasks in peak hours
and affecting the latency-sensitive traffic forwarding of the
remaining tenants. Therefore, cost-effective heavy hitter de-
tection and then targeted rate limiting are crucial for building
resilient cloud gateways.

Hardware and software gateways. Cloud service gateways
can be classified into hardware and software gateways. The
hardware gateways are generally built with fixed-function
switches [24], programmable switches [25] or smartNICs [26],
which address the forwarding capacity problem, e.g., P4-based
Tofino switch chip can provide Tbps-level forwarding through-
put and µs-level forwarding latency. However, constrained by
the hardware resources (e.g., limited TCAM for storing flow
items) and fixed configuration, the hardware gateways lack
scalability to maintain huge concurrent sessions and flexibility
to provide diverse service capabilities. To this end, software
gateways [27], [28] are deployed to address the flexibility
problem. Software gateways are based on x86 bare-metal
servers or virtualization techniques such as VM [29] and
docker [30]. Software gateways are highly flexible to imple-
ment diverse applications such as DPI and encryption. The
defect of software gateways is the low processing capability,
especially for a single CPU core, which is vulnerable to
persistent traffic pressure (packets of one heavy-hitter flow will
be hashed into the same CPU core for in-order processing).
In this work, we focus on improving the performance stability
of software gateways to steadily serve concurrent tenants.

B. Traffic Characteristics in Cloud Service Gateways
We measure the real traffic characteristics in Alibaba Cloud

software gateways. The results show that network traffic is
steady for most of the time and traffic bursts do happen, ex-
erting a big pressure to gateways, but at a very low frequency.

Specifically, Fig. 1 shows the network traffic and packet
drops on NICs in one Alibaba Cloud gateway cluster for three
weeks. We can find that the traffic volume changes periodically
(day and night) and steadily in general without frequent
persistent bursts. The packet drops are much lower compared
with the traffic volume by (at least) four orders of magnitude.
Furthermore, the packet drops are evenly distributed, the long
spikes only occur in a few moments, e.g., in the 16th days. The
spikes of packet drops essentially reflect the bursts of traffic
and the corresponding pressures to the gateways.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0e+00

2e-05

4e-05

6e-05

8e-05

1e-04

1e-04

Pa
ck

et
 ra

te

Pa
ck

et
 d

ro
p

ra
te

Day

Packet rate Packet drop rate

Fig. 1. Network traffic and packet drops on NICs in a typical Alibaba Cloud
software gateway cluster (The traffic rate has been normalized, start date:
2020/06/14 00:00:00, end date: 2020/07/05 00:00:00)

Other gateway clusters show similar network traffic and
packet drop pattern. It can be inferred that there is no packet
drop for most of the time. Further analysis shows the packet
drop probability follows an obvious heavy-tail distribution,
which means persistent heavy-hitter flows that cause severe
packet loss at gateway NICs are very rare.

Since persistent heavy-hitter flows occur infrequently, if we
could detect these abnormal flows on demand rather than in
a 7*24 manner, the computation and memory overhead for
heavy hitter detection can be drastically eliminated.

C. Motivations
According to the above measurement results, we show

how CloudSentry detects the heavy-hitter flows and improves
the vulnerability of cloud gateways. CloudSentry follows a
two-stage heavy hitter detection architecture that contains a
lightweight coarse-grained detection plus an event-based fine-
grained detection. The coarse-grained detection runs for 7*24
hours, aiming to localize sudden changes of steady traffic.
Specifically, we select CPU utilization as the indicator, which
is easy to acquire but faithfully reflects the traffic load changes
on the gateways in real time. Once CPU utilization spikes
persist for a predefined period of time, we further start the
fine-grained heavy hitter detection to dump the packets, upload
the packets, analyze the results, associate the root causes and
make corresponding backpressure measures for rate limiting.

The CPU utilization monitoring in coarse-grained detection
stage is conducted at the control plane in a fairly slow pace

with zero disturbance to the high-performance data plane
forwarding. The fine-grained detection is conducted at the data
plane but in a very low frequency triggered by CPU spike
events which are generated by the coarse-grained detection.
Such a two-stage detection mechanism eliminates the data
plane interference and reduces the computation and memory
overhead as much as possible.

Compared with general heavy hitter detection approaches,
CloudSentry conducts targeted heavy hitter detection. That is
to say, with performance scalability taken into consideration,
our system only focuses on detecting and rate limiting the
heavy-hitter flows that cause forwarding performance degra-
dation, which is directly indicated by CPU utilization spikes.

III. SYSTEM DESIGN

In this section, we describe the basic architecture of Cloud-
Sentry. CloudSentry is composed of two parts: coarse-grained
detection (§III-A) and fine-grained detection (§III-B). As
CloudSentry is dedicated to the software gateway system, it
measures the traffic load changes via the CPU spikes, which
is further regarded as the evidence of potential heavy hitters.
Once a CPU spike is detected, it triggers a more detailed heavy
hitter detection to find out the candidate heavy hitters as well
as the root causes behind.

A. Coarse-grained Detection

Coarse-grained detection is shown in Fig. 2. The distributed
deployed gateways will report their CPU utilization rates
periodically to a storage system. The coarse-grained detection
algorithm is very simple. It first reads these CPU utilization
rates, if one of the CPUs exceeds a pre-defined threshold T1,
then it triggers the next stage process (fine-grained detection).

It is obvious that coarse-grained detection does not affect
packet forwarding in the data plane, instead, it only measures
the CPU utilization rate in the control plane. This design
avoids invoking a large amount of unnecessary background
measurement when cloud service traffic is in the steady period,
reducing the impact on the data plane as much as possible.

Usually several gateways form a service cluster, providing
a unified Virtual IP (VIP) for service access. Flows generated
by the same service in one cluster are strongly correlated,
which results in a strong correlation of heavy hitters in the
same cluster. Therefore the detection (including fine-grained
detection in next stage) is cluster-based, which tests a cluster’s
CPU utilization rates and triggers CPU spike events.

B. Fine-grained Detection

Fine-grained detection is shown in Fig. 3. It is triggered
by the condition that CPU spikes occur in the coarse-grained
detection. Fine-grained detection is divided into three pro-
cedures: packet dump, top-flow analysis, and comprehensive
analysis.

Packet dump. The CPU-spike usually is a transient event,
which means most of the traffic bursts last for a very short
time, e.g., less than one second, which will not drastically
affect the data plane performance. A few works try to solve

GatewayGatewayGateway
Storage
System

CPU
spikes

… … …

GatewayGatewayGateway
Storage
System

CPU
spikes

GatewayGatewayGateway
Storage
System

CPU
spikes

Next
stage

Next
stage

Next
stage

CPU
util rates

CPU
util rates

CPU
util rates

read

read

read

Cluster 1

Cluster 2

Cluster N

yes

yes

yes

Fig. 2. First Stage: Coarse-grained Detection

Pre-check

Packet dump
on spike-cores

Packet dump

Packet tuples
extracted

Top-flow
analysis

Top-flow analysis

Service scene
analysis

Back-pressure

Comprehensive analysis

Fig. 3. Second Stage: Fine-grained Detection

micro-burst in data centers [31], [32], while we concentrate
on persistent traffic bursts. To eliminate frequent interruption
caused by the micro-burst effect, we perform a pre-check
process before packet dump on gateways. If the pre-check
confirms the current CPU utilization rate is lower than a
threshold T2, the detection will skip this pass of packet dump
procedure. Only when the current CPU utilization exceeds T2,
the packet dump will be performed. Packet dump is executed
on the specified CPU core which has a spike, others without
spikes will not be affected. A sampling method is used in
packet dump to reduce the performance interference of packet
dump to the data plane. We also design an algorithm for
packet dump to further protect packet forwarding by limiting
the maximum packet dump number in a short time interval.
The packet dump details are introduced in §IV-B.

Top-flow analysis. Once packet dump ends, the detection
begins to extract the candidate flow tuples (i.e., potential heavy
hitters), and then performs top-flow analysis. A tuple means a
field in the packet header, e.g., source IP address, destination
IP address, etc. The extracted tuples will be stored in the
storage system. The top-flow analysis algorithm reads these
tuples and find out top flows which potentially cause CPU
spikes. Flows are aggregated in different dimensions, e.g.,
five-tuple flow <sIP,dIP,sPort,dPort,proto>, one-tuple flow
<tunnel-id>. Multilevel top flows have different functions for
further analysis with diverse services and complex forwarding
paths. The top-flow analysis details are introduced in §IV-C.

Comprehensive analysis. The top-flow analysis only con-
ducts flow-level detection. In the cloud environment, we
further need to find out which tenant and which service cause
a heavy-hitter impact. The tenant-level detection is easy to
accomplish by aggregating the flow-level results with tenant
identifiers. The service-level detection is a more complicated
task. In addition to the need of more tuples than traditional
heavy hitter detection, it also needs configuration information
in the control plane. These analysis is further leveraged by
backpressure, which is used to prevent gateways from ex-
periencing persistent high processing delay and packet loss
rate. Sometimes, heavy hitters last for a very long-time, e.g.,
tens of minutes. These heavy hitters bring a huge decrease to
processing performance of gateways. Therefore, once detected,
we need to eliminate the heavy hitter’s damage and protect
the gateways. Backpressure is one solution in the cloud to
limit the sending rate of a heavy hitter [4]. The limitation of

backpressure is that it only works for heavy hitters from cloud
controlled resources. The comprehensive analysis details are
introduced in §IV-D.

IV. IMPLEMENTATIONS

In this section, we show the implementation details and
deployment experience of CloudSentry in Alibaba Cloud.

A. CPU Utilization Collection and Check

We implement a CPU utilization collection process on each
gateway. It reads the current CPU utilization rates every second
and uploads them to a remote storage system through APIs.
In case network jitters, the process first records the CPU
rates to local disk, then uploads them to storage system. The
storage system we employ is a public cloud storage service,
named SLS [1], which provides high-throughput and stable
log reads and writes. The coarse-grained detection pulls the
CPU utilization rates from SLS and checks whether a CPU
exceeds a spike threshold. The spike threshold is usually set
to be T1 = 90%, because when a CPU utilization reaches 90%,
the corresponding gateway starts to drop packets with a higher
probability. The CPU utilization collection and check runs for
7*24 hours. Both the CPU utilization collection (on gateways)
and spike threshold check (on a centralized controller) are
light-weight implementations. Such a manner does not affect
the data plane and saves a large amount of processing ability
when gateways are not in performance bottlenecks caused by
heavy-hitter flows. Once a CPU spike is detected, it would
trigger a packet dump stage (in fine-grained detection).

B. Packet Dump

In §III, we have mentioned to have a pre-check procedure in
gateway servers before packet dump, with which small-burst
can be filtered. In our implementation, the pre-check threshold
is set to be T2 = 50%. It means if the current CPU utilization
rate is higher than 50%, we will start the packet dump process.
Otherwise, we skip it because the heavy hitter has gone. Note
that T2 < T1 = 90%. A smaller T2 means more packets will
be captured in case heavy-hitter flows be neglected. The online
gateways usually have strict cluster capacity management. If
the average utilization rate is close to 50%, the gateway cluster
needs to be expanded. Therefore, the CPU utilization rate will
be less than 50% under normal circumstances.

The gateways run at multi-core servers. According to the
operator’s experience, a gateway server only has one persistent

CPU spike at the same time in most cases. Therefore, the
packet dump is executed on a specified core which triggered
a spike in the coarse-grained detection. If more than one core
has a spike, then in our current system the packet dump is
executed sequentially on these cores.

In order to prevent dumping too many packets from affect-
ing the forwarding in data plane, we implement a rate limiting
algorithm in packet dump process, shown in Algorithm 1. This
algorithm has two purposes. Firstly, restricting the maximum
packet dump number, R, in one second. If the target packet
dump number x exceeds R, then it takes d xRe seconds to
complete the packet dump. Secondly, sampling the packets
evenly in a stream of traffic packets. Note that new tokens
is proportional to the time interval in two consecutive dump
packets, therefore the sampling is time evenly distributed. For
example, if the rate limiting threshold R = 100, and we want
to capture 500 packets, then it dumps a packet every 0.01
seconds, and needs 5 seconds to complete the packet dump
process.

Algorithm 1: Rate limiting algorithm for packet dump
Input: rate limiting threshold R, rate limiting record

r, machine frequency F
Result: Accept or Drop this packet

1 cycles now ← get cycles now();
2 cycles last ← r.cycles last ;
3 interval ← cycles now − cycles last;
4 new tokens← b(interval ∗R)/F c;
5 if new tokens > 0 then
6 r.tokens← r.tokens+ new tokens ;
7 r.cycles last← cycles now ;
8 if r.tokens > R then
9 r.tokens← R ;

10 if r.tokens > 0 then
11 r.tokens← r.tokens− 1 ;
12 return Accept ;

13 return Drop;

C. Top-flow Analysis

We need to extract the candidate tuples of the dumped
packets for further analysis. Cloud operators usually run
an overlay network to isolate traffic from different tenants.
The packet format for overlay network in Alibaba Cloud is
Vxlan [33]. In order to do a thorough analysis, we extract
the Vxlan tunnel-id, inner and outer five-tuple, basic packet
information, shown in Table I. The inner-6tuple and outer-
6tuple are marked by *, which means that they are logically
tuples and do not consume additional storage space.

We can see that tunnel-id plays an important role in the top-
flow analysis, because most of the concurrent heavy hitters are
caused by one tenant (tunnel-id denotes a tenant). We call this
phenomenon “dominant-tenant effect”. A dominant-tenant is
likely to send out one elephant flow, or multiple small flows

belonged to a same service. A single elephant flow can only be
sent to a single CPU (avoiding the out-of-order effect). Even
though multiple flows are likely hashed to different CPUs by
multilevel ECMP paths, the flows with the same service in
a tenant may be directed to one CPU due to special overlay
forwarding rules1. Therefore, if we can find out a dominant-
tenant, then we can narrow down the heavy hitter detection
range greatly.

Based on the extracted tuples, top-flow analysis algorithm
is trying to find out the top flows defined by different com-
bination of tuples, as shown in Algorithm 2. The basic idea
is to find out flows that have large z-scores. The definition of
z-score is:

z-score =
x− µ
σ

(1)

where x is a variable, µ,σ are the mean, standard deviation of a
variable set. The z-score means a deviation from average, and
the deviation threshold Z is set to be 1 in our implementation.
The algorithm finds out three types of heavy hitters, i.e.,
tunnel-id, inner-6tuple, outer-6tuple. These heavy-hitter types
will be used in comprehensive analysis.

TABLE I
TUPLES EXTRACTED

inner-5tuple <sIP,dIP,sPort,dPort,proto> from Vxlan inner layer
outer-5tuple <sIP,dIP,sPort,dPort,proto> from Vxlan outer layer
tunnel-id tunnel id from Vxlan tunnel layer
pkt info packet information, e.g., length, timestamp, location
*inner-6tuple <tunnel-id, inner-5tuple>
*outer-6tuple <tunnel-id, outer-5tuple>

Algorithm 2: Top-flow analysis algorithm
Input: tunnel-id List tList, inner-6tuple List iList,

outer-6tuple List oList, z-score threshold Z
Result: top tunnel-id List tTopF low, top inner-6tuple

List iTopF low, top outer-ttuple List
oTopF low

1 Function findTopFlow(List l)
2 z-score ← get zscore(l) ;
3 topList = [] ;
4 for i← 1 to l.length() do
5 if z − score[i] > Z then
6 topList.add(l[i]) ;

7 return topList ;

8 tTopF low ← findTopFlow(tList) ;
9 iTopF low ← findTopFlow(iList) ;

10 oTopF low ← findTopFlow(oList) ;

D. Comprehensive Analysis

In addition to the basic heavy hitter detection, we also do
further comprehensive analysis. On the one hand, we associate

1These rules are designed for purposes like security, deep packet inspection,
traffic shaping, etc.

the heavy hitters with the cloud service scenarios, deriving a
conclusion that which tenant and which service result in the
CPU spikes. Due to the space limitations, we do not show
the specific algorithms. The basic idea is that locating the
tenant using top tunnel-id, narrowing down the service scope
using top inner-6tuple, and locating a specific service using top
outer-6tuple. We mainly focus on cloud network services, such
as Internet Service, Cross-region Service, or Hybrid Cloud
Service. From the perspective of cloud gateways, these services
(including heavy hitters) have directions, from-cloud or to-
cloud. While from-cloud means the traffic is coming from a
cloud source, such as a hypervisor, or a cloud service, to-cloud
is the opposite.

On the other hand, we have implemented a backpressure
recommendation algorithm. Lacking traffic scheduling mech-
anism in different forwarding cores, the software gateways
usually suffer from a weak single-core processing capability.
Once a heavy hitter happens at a forwarding core, it drastically
decreases the Service Level Agreements (SLAs) of this core,
incurring increased forwarding delay and packet loss rate.
Conducting a rate limiting at the gateway NICs is one solution
to relieve the heavy-hitter impact. However, the NICs lack
tenant isolation mechanism, which means a rate limiting in
NICs may harm the normal traffic of other tenants. Therefore,
we take a backpressure method, which limits the heavy hitters
at the source. The backpressure algorithm is simple, it halves
the forwarding rate of the heavy-hitter sources iteratively until
the CPU spikes disappear. Note that we only draw a backpres-
sure decision, not implement the decision automatically. The
actual backpressure actions should be confirmed by operators
in practice. Obviously, the backpressure is only effective when
the heavy-hitter source is in the cloud. If the heavy hitters
come from non-cloud sources, such as the Internet, or the
tenant data centers, then we need to consider other methods
to lessen heavy-hitter damage. For example, we can offload
the heavy hitters to high-speed hardware gateways.

E. Deployment in Cloud-scale System

Major cloud providers have tens of regions across the
world, with each region containing 5-20 DCs [34]. In our
implementation, each DC contains several gateway clusters.
Hence, how to deploy a heavy hitter detection in large-
scale cloud environment should be considered. The simplest
extension is to deploy a collection of heavy hitter detection
for each cluster. However, it is very difficult to operate and
maintain such a system. Actually, CloudSentry is deployed in
a centralized analysis controller, just with a single server. The
reason for a centralized deployment is that CloudSentry filters
out redundant traffic with best effort for heavy hitter detection.

While heavy hitters may happen in different regions at the
same time, a sequential processing model could incur Head-of-
Line (HOL) effect. To solve this problem, we run a detection
thread for each region. Note that we do not run a detection
thread for each cluster, because the CPU spikes happen with a
small probability in a practical gateway cluster. We can prove
that the sum of a finite number of i.i.d Poisson variables is still

a Poisson variable. Therefore, according to the Poisson theory,
in a short time interval ∆t, only one cluster with spikes has the
probability P (n = 1) = λ∆t+ o(∆t), where λ is a constant,
and more than one cluster has CPU spikes has the probability
P (n > 1) = o(∆t).

CloudSentry has been deployed in Alibaba Cloud for over
six months. It helps the operators identify heavy hitters easily
and fast, it also helps to backpressure several persistent heavy
hitters triggered by cloud sources.

V. EVALUATION

A. Setup

In our evaluation, we select six gateway clusters in Alibaba
Cloud to evaluate our system. The basic information and
traffic characteristics are shown in Table II. The gateways are
implemented on x86-based servers, which run DPDK-based
(a kernel bypass technique [35]) forwarding program. Each
server is configured with 32-core CPUs (26 cores for packet
processing, 6 cores for maintenance tasks like communication
with controller and CPU data collection) and four 40Gbps
NICs. These clusters are distributed in different regions glob-
ally. Each cluster has 6-16 gateways, according to the current
traffic rate and traffic volume prediction in the future. The
default measurement duration is for one month, with starting
date: 2020/06/22 00:00:00, ending date: 2020/07/22 00:00:00.

We implement the heavy hitter detection algorithm on a
centralized controller. Both coarse-grained detection (except
CPU utilization collection) and fine-grained detection are
executed in controller. The controller runs on a server with
the same configuration as gateways. In order to improve
the parallel detection ability of different regions, we start a
detection thread for each region (the selected gateway clusters
are in different regions). The SLS log system [1] are used to
store CPU utilization rates and several intermediate results.

TABLE II
GATEWAY CLUSTER INFORMATION

Gateway Cluster A B C D E F
Max Mpps 64.2 55.8 126.1 117.9 92.1 101.4
Avg Mpps 15.0 25.9 54.7 60.1 49.8 40.1
Max Gbps 494.4 181.6 670.4 520.0 629.6 393.6
Avg Gbps 74.4 86.4 211.2 251.2 251.2 157.2
of Gateways 16 8 16 16 8 6

B. CPU Spikes Measurement

We measure the CPU utilization rate of six gateway clusters
for one month. Fig. 4 shows the cumulative distribution func-
tion (CDF) of their CPU utilization rate. Generally, the average
CPU utilization rate of the cloud gateways are relatively low.
For example, the average CPU utilization of cluster-A is 4%;
the average CPU utilization of cluster-B, cluster-C and cluster-
D are around 20%; cluster-E and cluster-F have the highest
CPU utilization of around 33%. Furthermore, the CDF curves
of the CPU utilization rate of gateway clusters have very long
tails, which means CPU’s peak utilization occurs infrequently.
Such long-tail property motivates us to use CPU spikes to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

CPU core utilization rate(%)

cluster-A
cluster-B
cluster-C
cluster-D
cluster-E
cluster-F

Fig. 4. CDF of CPU utilization rate in six
clusters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

CPU spike duration (seconds)

cluster-A
cluster-B
cluster-C
cluster-D
cluster-E
cluster-F

Fig. 5. CDF of CPU persistent high utilization
(> 90%) in six clusters.

0

1

2

3

4

A B C D E F

of

 C
PU

 s
pi

ke
s

Gateway cluster

duration (>20s and <60s)
duration >60s

Fig. 6. Long duration of CPU persistent high
utilization (> 90%) in six clusters.

trigger the dump and analysis of heavy-hitter flows in a cost-
effective way.

Fig. 5 shows the CDF of CPU persistent high utilization
(> 90%). It can be inferred from Fig. 5 that one single CPU
spike (lasting for less than or equal to one second) occurs
much more frequently than CPU spikes lasting for more than
one second. Specifically, more than 40% of CPU spikes last
for less than or equal to one second; more than 68% of
CPU spikes last for less than or equal to two seconds. In the
six gateway clusters, most of CPU’s high utilization will not
persist for a very long time. The CDF curves also have very
long tails. Fig. 6 shows the count of long duration (>20s) of
CPU persistent high utilization. All the six clusters have less
than five times of long duration. It can be concluded that the
long duration occurs with a low probability in cloud services.
However, even with low probability, once it happened, it will
deteriorate the Service Level Agreement(SLA) of thousands
of tenants. In the following experiments, we will evaluate a
backpressure procedure to eliminate the harm of long duration
(>60s) of CPU persistent high utilization Actually, a single
CPU spike will not drastically affect the traffic processing
of concurrent flows. Even the CPU’s peak utilization causes
some packet losses, they will be re-transmitted by the end-host
TCP stack. Accordingly, in our system design, we conduct a
pre-check process to reduce the impact of one single CPU
spike in fine-grained detection. However, persistent high CPU
utilization will undermine end user’s network experience and
our system will detect the CPU spikes persist for more than
one second.

Fig. 7 shows the additional CPU consumption in control
plane to collect the gateway’s several basic stats, including
the CPU utilization rate. We can see that the additional CPU
consumption is around 1%, which shows the coarse-grained
detection of CloudSentry is a light-weight monitoring task for
the CPU spikes.

C. Packet Dump Performance

Packet dump is an event-triggered action, the execution
times are proportional to the CPU spikes. Because a single
CPU spike happens more frequently than persistent CPU
spikes, we design a pre-check process to filter the single
CPU spike. Fig. 8 shows the packet-dump actions with and
without pre-check. We can draw two conclusions from this
figure. First, packet dump is an infrequent action, less than

300 packet-dump actions in six clusters during one month.
Second, the pre-check filters out 80% packet-dump actions at
most (in cluster-A). The design philosophy of CloudSentry
is to decrease the ineffective measurement to the maximum
extent. Fig. 9 shows the comparison between the total data
packets (traffic through gateways) and the dumped packets
(for heavy hitter detection). We can see that CloudSentry only
needs thousands of packets to detect the heavy hitters (for one
month), ten orders of magnitude lower than the original data
packets. Other approaches can only achieve at most three or
four orders of magnitude reduction.

D. Performance Overhead Comparison

We compare our approach (CloudSentry) with other heavy
hitter detection approaches like NetFlow [14], HashParal-
lel [8], CM-Sketch [10], NitroSketch [9] in the aspect of hash
computation, memory and storage overhead.

Fig. 11 shows the hash computation overhead per device
per second in the six clusters under the five approaches.
Among the five approaches, NetFlow leverages one hash
function to index the flow table of sampled flow items. The
hash computation will be invoked once an incoming packet
is sampled with a probability of 1/1000. Hence, the hash
computation overhead is proportional to the packet arrival
rate as well as the sampling rate. HashParallel uses six hash
functions in parallel to maintain a flow cache containing the
most frequently accessed flow items. The six hash functions
are invoked on per-packet basis. Therefore, HashParallel is the
most computation-intensive. CM-Sketch achieves the optimal
performance with five hash functions when the parameter δ
is set to 0.05. Under such configuration, five hash functions
will be invoked on the arrival of each packet. NitroSketch
applies sampling on traffic and conducts one hash calculation
every 20 packets on average. Therefore, NitroSketch is less
computation-intensive compared with HashParallel and CM-
Sketch. As a contrast, our approach does not rely on the flow
table to maintain stateful counters to identify the heavy hitters
thus does not need any hash computation. The event-based
detection is stateless with minor computation overhead.

Fig. 10 shows the data structure memory overhead in a
single device under the five approaches. NetFlow needs to
maintain a flow table of about 80MB with sampled flow items
and their counters. HashParallel needs to maintain a much
smaller flow cache of around 80KB with most frequently

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A B C D E F

C
PU

 u
til

 ra
te

 (%
)

Gateway cluster

Fig. 7. Additional CPU consumption
in control plane to collect gateway
information in different clusters.

 0
 50

 100
 150
 200
 250
 300
 350

A B C D E F

of

 p
ac

ke
t-d

um
p

ac
tio

ns

Gateway cluster

w/o pre-check
w/ pre-check

Fig. 8. The comparison of packet dump
actions between w/ and w/o pre-check
for one month in different clusters.

1e+02
1e+04
1e+06
1e+08
1e+10
1e+12
1e+14
1e+16
1e+18

A B C D E F

of

 p
kt

s

Gateway cluster

pkts of traffic
pkts of dumped

Fig. 9. The comparison between traf-
fic and dumped pkts for one month in
different clusters. (Y-axis is in logscale)

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

NetFlow

HashParallel

CM-Sketch

Nitro
Sketch

CloudSentry

M
em

or
y

(b
yt

es
)

methods

Fig. 10. Memory overhead in a single
device. (Y-axis is in logscale)

1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07
1e+08

A B C D E F

of

 h
as

he
s

Gateway cluster

NetFlow
HashParallel

CM-Sketch
NitroSketch

CloudSentry

Fig. 11. Hash computation overhead per device per
second in different clusters. (Y-axis is in logscale)

1e+04
1e+05
1e+06
1e+07
1e+08
1e+09
1e+10
1e+11
1e+12
1e+13

A B C D E F

st
or

ag
e(

by
te

s)

Gateway cluster

NetFlow
HashParallel

CM-Sketch
NitroSketch

CloudSentry

Fig. 12. Storage overhead in different clusters for
one month. (Y-axis is in logscale)

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

C
PU

 u
til

iz
at

io
n

ra
te

 (%
)

of dump pkts

50% load
60% load

70% load
80% load

90% load

Fig. 13. Dumping packets when CPU utilization
rate <= 90%.

accessed flow items and their counters. CM-Sketch and Ni-
troSketch has the similar sketch data structures consuming the
similar amount of memory of around 2MB. The data structure
size depends on the error rate. While our approach needs to
store a list of only 80-100 packets each time triggered by the
CPU high utilization. Under the same configuration with that
in Fig. 11, our approach has the lowest memory occupation
among the five approaches.

In Fig. 12, we measure the storage consumption in the six
clusters for one month under the five approaches. Here, data
storage is allocated to periodically record the instant heavy
hitters once in every 10s. The heavy-hitter logs are maintained
for at least one month in cloud service providers for on-
demand retrieval, analysis and statistics. The storage will
consume huge amount of disks which come with additional
cost for acquisition and maintenance. For example, NetFlow
and HashParallel dump the top 100 heavy hitters with a storage
overhead of 10GB on average per month. While CM-Sketch
and NitroSketch have to dump the entire sketch data structures
to the disks since the sketches maintain no flow identifiers
and we have to record the entire data structure for flow
item membership query. They consume around 10TB each
month. By contrast, our approach consumes very little storage
overhead of around 100KB in a month since what we have to
do is to dump 80-100 packets once in every CPU spike event.
To summarize, our approach radically reduces the expense for
exception logging in cloud-scale service gateways.

E. CPU Contention During Packet Dumping
When triggered by the event of CPU spikes, the packet

dump operation will further consume additional CPU cycles in

data plane. We evaluate the data plane CPU utilization change
in Fig. 13 and Fig. 14, to check whether dumping packets will
drastically affect the CPU utilization in data plane, which will
further affect the packet forwarding latency. Furthermore, our
system will rate limit the number of sampled packets to 100
since 100 packets is good enough for fine-grained heavy hitter
detection in our cloud environment.

Fig. 13 shows the impact of packet dump on CPU utilization
rate when the CPU utilization <= 90%. We measure with
different traffic load levels from 50% load to 90% load. It is
indicated that the increase of dumped packets per second will
not drastically affect the CPU utilization, which means the
design and implementation of the packet dump mechanism of
our system is lightweight and sustainable for handling huge
amount of concurrent flows at cloud gateways. However, when
the packet dump speed hits the rate limit threshold, the CPU
utilization has an obvious jump. According to our debugging
and estimation, it is the rate limiting logic itself consumes a
fraction of CPU processing power, because rate limiting is a
per-packet operation executed in high frequency in data plane.

Fig. 14 shows the impact of packet dump on CPU utilization
rate when the CPU utilization = 100%. Likewise, we can draw
the similar conclusion with the previous Fig. 13. The y-axis of
Fig. 14 shows the traffic processing ability after normalization.
It is indicated that before rate limiting is invoked, the traffic
processing rate is at the peak and rather steady. The execution
of rate limiting will consume a fraction of CPU cycles and
lower the traffic processing throughput accordingly.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200

Pr
oc

es
si

ng
 ra

te

of dump pkts

100% load

Fig. 14. Dumping packets when CPU
utilization rate = 100%. (The pro-
cessing rate has been normalized.)

 0

 20

 40

 60

 80

 100

A B C D E F

Pe
rc

en
ta

ge
 (%

)

Gateway cluster

1
2

3
4

5

Fig. 15. Overloaded CPU core #’s
distribution when CPU utilization ex-
ceeds 90% in different clusters.

 0
 10
 20
 30
 40
 50
 60
 70
 80

A B C D E F

Pe
rc

en
ta

ge
 (%

)

Gateway cluster

Top-1 flow
Top-1 tenant

Fig. 16. The proportion of Top-1
flow and Top-1 tenant on average in
different clusters.

 0
 10
 20
 30
 40
 50
 60

A B C D E F

Ti
m

e
(s

ec
on

ds
)

Gateway cluster

heavy hitter detected
heavy hitter backpressure

Fig. 17. Time consumed for heavy
hitter detected and start to backpres-
sure in different clusters.

F. Dominant-Tenant Effect

Fig. 15 shows the number of overloaded CPU cores dis-
tribution with CPU utilization exceeds 90% in six gateway
clusters for one month. For cluster-A and cluster-E, all the
overloaded CPU cases affect only 1 CPU core. For cluster-B,
all the overloaded CPU cases affect 2 CPU cores. For cluster-
C, cluster-D and cluster-F, due to high-throughput incoming
traffic and traffic load balancing between CPU cores, more
than one CPU core is affected in some overloaded CPU cases.
According to the above measurement, we can infer that the
number of overloaded CPU cores also follows the long-tail
distribution that one CPU core overloaded occupies most of
the cases.

We take a deeper look into the dataset for finding the root
cause of the long-tail property and count the proportional
top-1 flow and top-1 tenant in different clusters during CPU
overloading in Fig. 16. Here, we find an interesting observa-
tion about the root cause of CPU overloading. We name it
“dominant-tenant effect” because we find that compared with
heavy-hitter flows, the heavy-hitter tenant is much more like
to become the root cause of CPU overloading. In Fig. 16, the
top-1 tenant occupies higher percentage of CPU overloading
than the top-1 flow in all clusters, especially in cluster-B, C, D,
E. That is to say, it is more easily to identify the heavy-hitter
traffic using the tenant IDs rather than using the traditional 5-
tuple flow IDs. The reason behind is that the flows generated
from the same tenant are highly correlated and the tenant ID
is more likely to aggregate the heavy-hitter flows. While the
flows between tenants are totally independent. When identify
the heavy-hitter tenant, we can directly rate limit the outlier
traffic from that tenant.

G. Heavy Hitter Detection and Backpressure Response Time

When the CPU overloading event occurs, our system needs
to verify the persistance of the CPU overloading for at least 2
seconds with distributed messaging and processing before the
heavy-hitter confirmation. After that, the system will prepare
the background resource to analyze and start to backpressure
the outlier flows. In both stages of CloudSentry, the algorithms
are simple and should be implemented in a short time,
e.g., several seconds. However, in our real deployment, the

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90

I II III IV

C
PU

 u
til

 ra
te

 (%
)

Time (seconds)

Spike threshold
CPU util rate

Fig. 18. An experiment of heavy hitter detection in test environment. I:
Heavy hitter detected(First stage). II: Packet dump(Second stage). III: Top-
flow analysis(Second stage). IV: Comprehensive analysis(Second stage)

detection and backpressure consumes longer time than naive
expectation.

Fig. 17 shows the time consumed on average for heavy hitter
detection (First Stage) and the corresponding backpressure
response (at the end of Second Stage) in six online gateway
clusters. The time for heavy-hitter detection is generally below
10 seconds while it takes nearly 1 minute to start to back-
pressure the heavy-hitter flows. The longer time is because
a number of cloud components are employed, such as log
storage service and database service. Using these standard
cloud components have two advantages. First, we can speed up
the development and deployment of our system. Second, we
can increase the stability of our system by leveraging the fault
tolerance mechanism of cloud components. An optimization is
easy to employ for a more time-sensitive heavy hitter detection
by cutting off these cloud components.

Fig. 18 shows a time line of a heavy-hitter detection
experiment. We use one VM to send background traffic and
heavy-hitter traffic to a gateway. All the traffic are received and
processed by one core of the gateway. The heavy hitter detec-
tion and backpressure process takes 58 seconds, and the first
stage, packet dump, top-flow analysis, comprehensive analysis
takes 9, 18, 14, 17 seconds respectively. The background
traffic consumes 26% CPU utilization. When the heavy hitter
occurs, the CPU utilization reaches (approximate) 97%. After
the backpressure is implemented, the CPU utilization drops
to (approximate) 60%, by halving the heavy-hitter traffic rate.
Note that our system only rate limit the very long duration
persistent large flows to protect the QoS of other normal flows

passing through the service gateways.

VI. EXPERIENCES LEARNED

In this section, we discuss the deployment experiences of
CloudSentry in nearly one year.

Low overhead and robustness. The heavy-hitter detec-
tion should be low overhead and robustness in online cloud
network environment. First, the resources in data plane (e.g.,
memory, CPU, bandwidth) are dedicated to forward packets,
leaving a small fraction of resources to do additional tasks
(such as heavy-hitter detection). Therefore, the heavy-hitter
detection should be low overhead in data plane, avoiding
interfering packet forwarding. Second, it can not be assumed
that the resources for data processing (e.g., storage, database,
stream computing) are unlimited. Cloud providers have plenty
of big-data processing systems. Intuition tells us that we can
use big data resources at will. However, experiences told us
that it is a big waste for storing and processing big data. Not
only waste a lot of budget, but also waste precious time for
localizing network anomalies. Third, the heavy-hitter detection
should be robustness. It is used to protect the network from
impact by critical persistent burst. Therefore, the detection
should keep working at some extreme conditions. In our
system, we employ several cloud components to build the
heavy-hitter detection. Though the detection system is not very
time-sensitive, it is very robust to complex network conditions.
Some methods [9], [36]–[38] are designed to achieve high
accuracy at the cost of CPU, memory, or storage overhead.
Therefore, they are hard to deploy in a large-scale production
cloud network.

Dominant-tenant effect for CPU spikes. According to our
evaluation (in Fig. 16), most CPU spikes are caused by one
dominant tenant, both in incast and elephant-flow scenarios.
It implies that the traffic among multiple tenants is totally
independent. Although the resource of the cloud network is
shared, behaviors of different tenants are isolated in most
cases. CPU spikes caused by one tenant will not trigger heavy
hitters from other tenants. Therefore, finding the dominant
tenant is very important in cloud heavy-hitter detection. We
achieve this idea by aggregating the captured traffic at the
tunnel-id granularity. Once the dominant-tenant is detected, we
will protect our cloud gateways by backpressure the dominant-
tenant’s traffic.

Impact of persistent heavy hitter is larger. Persistent
heavy hitters can impact more tenants, incurring more packet
losses and more economic losses, compared to transient heavy
hitters (aka, micro-bursts). Most tenants are insensitive to
micro-bursts because their applications can tolerate small
network jitters (e.g., fast retransmission of TCP stack). Ad-
ditionally, micro-bursts can be solved by some fault tolerance
mechanisms, e.g., by congestion control [39] and traffic shap-
ing [40]. In contrast, persistent heavy hitters are much more
annoying. Within our operational experiences, one persistent
heavy-hitter event may cause thousands of tenants suffering
the degradation of network performance.

VII. RELATED WORK

Sampling-based heavy hitter detection. A straightforward
way for heavy hitter detection is using port mirroring or
traffic splitter to collect a complete copy of traffic for remote
identification [41]. For cloud gateway traffic of huge volume,
the line-rate traffic gathering and identification can be costly.
NetFlow [14] and sFlow [15] take an alternative approach by
sending a sampled subset of network traffic to the remote col-
lector for analysis. Although packet sampling greatly reduces
the data collection and packet processing overhead, NetFlow’s
aggressively low sampling rate in practice [42] affects the
heavy hitter detection accuracy. As a comparison, our approach
also analyzes a small subset of network traffic with minor
performance overhead. However, the analysis is triggered on
demand by high CPU utilization with more accuracy rather
than aimless probabilistic sampling.

Counter-based heavy hitter detection. Counter-based
heavy hitter detection [36], [43]–[46] maintains a table of
flows and corresponding counters for heavy hitter measure-
ment. Generally, maintaining a complete table for all the
flows incurs huge memory overhead on high throughput links.
To overcome the limitation, these approaches only allocate
a bounded-size flow cache for the largest flows with a trade-
off between memory consumption and measurement accuracy,
where more memory promotes the accuracy. The flow table is
updated on a per-packet frequency and each update will further
produce multiple memory accesses for flow table scanning or
minimum item locating [45]. As a comparison, our approach
is much less computation-intensive and there is no need to
explicitly maintain the flow cache due to the hierarchy-based
detection mechanism according to CPU utilization.

Sketch-based heavy hitter detection. Sketch-based heavy
hitter detection [10]–[12], [16], [17] maintains implicitly
shared counters between flows and does not explicitly store
the flow identifers. Such slim data structures greatly reduce
the memory space overhead and make it possible to measure
all the concurrent flows. However, these approaches also have
known limitations. First, sketch-based approaches are even
more computation-intensive compared with counter-based ap-
proaches because multiple hashing calculations are invoked
on the arrival of each packet. Second, the probabilistic data
structures also expose trade-offs between space and accuracy.
One cannot achieve high accuracy and low memory cost at the
same time. Last but not least, these approaches do not track the
flow identifers, making it difficult to extract the keys and the
corresponding counters from the sketch. Therefore, it is hard
to enumerate or perform statistics about the heavy hitters. Our
approach addresses the above limitations with small log size.

VIII. CONCLUSION

In this work, to ensure the high availability of multi-tenant
cloud service gateways, we propose a two-stage heavy-hitter
detection approach CloudSentry. CloudSentry is triggered by
gateway CPU spikes in coarse-grained stage, then identify and
rate limit the outliers in fine-grained stage. Different from
existing heavy-hitter detection approaches based on per-packet

tracking using either explicitly maintained or implicitly shared
counters, our approach starts fine-grained detection only when
high CPU utilization occurs and persists for a predefined
period of time. Our approach is cost-effective and nearly
stateless, which eliminates the massive memory footprints and
CPU cycles once needed for heavy hitter detection on millions
of concurrent flows at the cloud gateways. CloudSentry has
been deployed in production for nearly one year, protect cloud
providers from being impacted by persistent heavy hitters.

REFERENCES

[1] “Alibaba cloud,” https://www.alibabacloud.com/.
[2] “Microsoft azure,” https://azure.microsoft.com/.
[3] “Amazon web services (aws),” https://aws.amazon.com/.
[4] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius,

J. Adriaens, S. Gribble, N. Foster et al., “Picnic: predictable virtualized
nic,” in Proceedings of ACM SIGCOMM, 2019.

[5] K. Qian, S. Ma, M. Miao, J. Lu, T. Zhang, P. Wang, C. Sun, and F. Ren,
“Flexgate: High-performance heterogeneous gateway in data centers,” in
Proceedings of APNet, 2019.

[6] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu,
“Tripod: Towards a scalable, efficient and resilient cloud gateway,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 570–
585, 2019.

[7] J. Son, Y. Xiong, K. Tan, P. Wang, Z. Gan, and S. Moon, “Protego:
Cloud-scale multitenant ipsec gateway,” in Proceedings of USENIX
NSDI, 2017.

[8] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of ACM SOSR, 2017.

[9] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of ACM SIGCOMM,
2019.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[11] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Transactions
on Networking, vol. 25, no. 2, pp. 1249–1262, 2016.

[12] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Transactions on Networking,
vol. 20, no. 5, pp. 1622–1634, 2012.

[13] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Un-
derstanding tcp incast throughput collapse in datacenter networks,” in
Proceedings of ACM WREN, 2009.

[14] B.-Y. Choi and S. Bhattacharyya, “Observations on cisco sampled
netflow,” ACM SIGMETRICS Performance Evaluation Review, vol. 33,
no. 3, pp. 18–23, 2005.

[15] P. Phaal, S. Panchen, and N. McKee, “Inmon corporation’s sflow: A
method for monitoring traffic in switched and routed networks,” 2001.

[16] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proceedings of ICALP, 2002.

[17] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proceedings of ACM SIGCOMM, 2002.

[18] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in Proceedings of USENIX NSDI, 2016.

[19] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “Ictcp: Incast congestion control
for tcp in data-center networks,” IEEE/ACM transactions on networking,
vol. 21, no. 2, pp. 345–358, 2012.

[20] R. B. Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Design-
ing heavy-hitter detection algorithms for programmable switches,”
IEEE/ACM Transactions on Networking, 2020.

[21] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Proceedings of ACM
SOSR, 2018.

[22] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An incrementally-
deployable p4-enabled architecture for network-wide heavy-hitter detec-
tion,” IEEE Transactions on Network and Service Management, vol. 17,
no. 1, pp. 75–88, 2020.

[23] M. T. Arashloo, P. Shirshov, R. Gandhi, G. Lu, L. Yuan, and J. Rex-
ford, “A scalable vpn gateway for multi-tenant cloud services,” ACM
SIGCOMM CCR, vol. 48, no. 1, pp. 49–55, 2018.

[24] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM CCR, vol. 44, no. 4, pp. 27–38, 2014.

[25] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of ACM SIGCOMM, 2017.

[26] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking: Smartnics in the public cloud,” in Proceedings
of USENIX NSDI, 2018.

[27] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in Proceedings of USENIX NSDI, 2018.

[28] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in Proceedings of USENIX NSDI,
2015.

[29] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya, “Sla-based
virtual machine management for heterogeneous workloads in a cloud
datacenter,” Journal of Network and Computer Applications, vol. 45,
pp. 108–120, 2014.

[30] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[31] D. Shan and F. Ren, “Improving ecn marking scheme with micro-burst
traffic in data center networks,” in Proceedings of IEEE INFOCOM,
2017.

[32] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Micro-burst in data
centers: Observations, analysis, and mitigations,” in Proceedings of IEEE
ICNP, 2018.

[33] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over
layer 3 networks.” RFC, vol. 7348, 2014.

[34] V. Dukic, G. Khanna, C. Gkantsidis, T. Karagiannis, F. Parmigiani,
A. Singla, M. Filer, J. L. Cox, A. Ptasznik, N. Harland et al., “Be-
yond the mega-data center: networking multi-data center regions,” in
Proceedings of ACM SIGCOMM, 2020.

[35] D. Intel, “Data plane development kit,” 2014.
[36] G. Cormode and M. Hadjieleftheriou, “Methods for finding frequent

items in data streams,” The VLDB Journal, vol. 19, no. 1, pp. 3–20,
2010.

[37] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens
in approximate measurement with automated statistical inference,” in
Proceedings of ACM SIGCOMM, 2018.

[38] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“Heavykeeper: An accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1845–1858,
2019.

[39] G. Kim and W. Lee, “Absorbing microbursts without headroom for data
center networks,” IEEE Communications Letters, vol. 23, no. 5, pp. 806–
809, 2019.

[40] A. Goswami, K. K. Pattanaik, A. Bharadwaj, and S. Bharti, “Loss
rate control mechanism for fan-in-burst traffic in data center network,”
Procedia Computer Science, vol. 32, pp. 125–132, 2014.

[41] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernan-
des, and D. Sadok, “A survey on internet traffic identification,” IEEE
communications surveys & tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[42] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-
Pareta, “Analysis of the impact of sampling on netflow traffic classifi-
cation,” Computer Networks, vol. 55, no. 5, pp. 1083–1099, 2011.

[43] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proceedings of VLDB, 2002.

[44] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems (TODS), vol. 28, no. 1, pp. 51–55, 2003.

[45] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proceedings of ICDT,
2005.

[46] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Randomized
admission policy for efficient top-k and frequency estimation,” in Pro-
ceedings of IEEE INFOCOM, 2017.

